ZOJ1310-Robot (BFS)
The Robot Moving Institute is using a robot in their local store to transport different items. Of course the robot should spend only the minimum time necessary when travelling from one place in the store to another. The robot can move only along a straight line (track). All tracks form a rectangular grid. Neighbouring tracks are one meter apart. The store is a rectangle N x M meters and it is entirely covered by this grid. The distance of the track closest to the side of the store is exactly one meter. The robot has a circular shape with diameter equal to 1.6 meter. The track goes through the center of the robot. The robot always faces north, south, west or east. The tracks are in the south-north and in the west-east directions. The robot can move only in the direction it faces. The direction in which it faces can be changed at each track crossing. Initially the robot stands at a track crossing. The obstacles in the store are formed from pieces occupying 1m x 1m on the ground. Each obstacle is within a 1 x 1 square formed by the tracks. The movement of the robot is controlled by two commands. These commands are GO and TURN.
The GO command has one integer parameter n in {1,2,3}. After receiving this command the robot moves n meters in the direction it faces.
The TURN command has one parameter which is either left or right. After receiving this command the robot changes its orientation by 90o in the direction indicated by the parameter.
The execution of each command lasts one second.
Help researchers of RMI to write a program which will determine the minimal time in which the robot can move from a given starting point to a given destination.
Input
The input consists of blocks of lines. The first line of each block contains two integers M <= 50 and N <= 50 separated by one space. In each of the next M lines there are N numbers one or zero separated by one space. One represents obstacles and zero represents empty squares. (The tracks are between the squares.) The block is terminated by a line containing four positive integers B1 B2 E1 E2 each followed by one space and the word indicating the orientation of the robot at the starting point. B1, B2 are the coordinates of the square in the north-west corner of which the robot is placed (starting point). E1, E2 are the coordinates of square to the north-west corner of which the robot should move (destination point). The orientation of the robot when it has reached the destination point is not prescribed. We use (row, column)-type coordinates, i.e. the coordinates of the upper left (the most north-west) square in the store are 0,0 and the lower right (the most south-east) square are M - 1, N - 1. The orientation is given by the words north or west or south or east. The last block contains only one line with N = 0 and M = 0.
Output
The output contains one line for each block except the last block in the input. The lines are in the order corresponding to the blocks in the input. The line contains minimal number of seconds in which the robot can reach the destination point from the starting point. If there does not exist any path from the starting point to the destination point the line will contain -1.
Sample Input
9 10
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0
7 2 2 7 south
0 0
Sample Output
12
题解:
具有两种操作的广搜,和普通的广搜相比有些不同,普通的广搜一般是一种操作,上下左右,
这一题加上了转向。同时还要注意的是这个机器人本身的大小,这个也就确定了,边界上它是走不了的。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#define ll long long
using namespace std;
const int MAX = ;
const int INF = <<;
const int dir[][]{{-,},{,},{,},{,-}};
struct Nod{
int x,y,t,d;
bool operator < (const Nod &a) const{
return t > a.t;
}
};
int g[MAX][MAX], n, m, mark[MAX][MAX][];
int bfs(int bx, int by, int ex, int ey, int f) {
priority_queue<Nod> que;
Nod nod;
mark[bx][by][f] = ;
que.push((Nod){bx,by,,f});
while(!que.empty()) {
nod = que.top();
que.pop();
int x = nod.x, y = nod.y;
if(x == ex && y == ey) return nod.t;
int d = nod.d;
if(mark[x][y][(d+)%] == - || mark[x][y][(d+)%] > nod.t + ){
mark[x][y][(d+)%] = nod.t+;
que.push((Nod){x,y,nod.t+,(d+)%});
}
if(mark[x][y][(d-+)%] == - || mark[x][y][(d-+)%] > nod.t + ){
mark[x][y][(d-+)%] = nod.t + ;
que.push((Nod){x,y,nod.t+,(d-+)%});
}
int nx = x, ny = y;
for(int i = ; i <= ; i ++) {
nx += dir[d][];
ny += dir[d][];
if(nx <= || nx >= m || ny <= || ny >= n)break;
if(g[nx][ny] == || g[nx-][ny] == || g[nx][ny-] == || g[nx-][ny-] == ) break;
if(mark[nx][ny][d] == - || mark[nx][ny][d] > nod.t+){
mark[nx][ny][d] = nod.t+;
que.push((Nod){nx,ny,nod.t+,d});
}
}
}
return -;
}
int main() {
int bx, by, ex, ey, d, ans;
char str[];
while(scanf("%d%d",&m,&n)&&(n+m)) {
for(int i = ; i < m; i ++) {
for(int j = ; j < n; j ++) {
scanf("%d",&g[i][j]);
}
}
scanf("%d %d %d %d %s",&bx,&by,&ex,&ey,str);
if(str[] == 'n') d = ;
else if(str[] == 'e') d = ;
else if(str[] == 's') d = ;
else if(str[] == 'w') d = ;
memset(mark,-,sizeof(mark));
ans = bfs(bx,by,ex,ey,d);
printf("%d\n",ans);
}
return ;
}
ZOJ1310-Robot (BFS)的更多相关文章
- UVa 1600 Patrol Robot (BFS最短路 && 略不一样的vis标记)
		题意 : 机器人要从一个m * n 网格的左上角(1,1) 走到右下角(m, n).网格中的一些格子是空地(用0表示),其他格子是障碍(用1表示).机器人每次可以往4个方向走一格,但不能连续地穿越k( ... 
- poj 2688 Cleaning Robot bfs+dfs
		题目链接 首先bfs, 求出两两之间的距离, 然后dfs就可以. #include <iostream> #include <cstdio> #include <algo ... 
- Uva 1600 Patrol Robot (BFS 最短路)
		这道题运用的知识点是求最短路的算法.一种方法是利用BFS来求最短路. 需要注意的是,我们要用一个三维数组来表示此状态是否访问过,而不是三维数组.因为相同的坐标可以通过不同的穿墙方式到达. #inclu ... 
- Japan 2005 Domestic Cleaning Robot /// BFS 状压 二进制位运算 结构体内构造函数 oj22912
		题目大意: 输入w h,接下来输入h行w列的图 ' . ':干净的点: ' * ' :垃圾: ' x ' : 墙: ' o ' : 初始位置: 输出 清理掉所有垃圾的最短路径长度 无则输出-1 ... 
- UVa 1600 Patrol Robot(BFS)
		题意: 给定一个n*m的图, 有一个机器人需要从左上角(1,1)到右下角(n,m), 网格中一些格子是空地, 一些格子是障碍, 机器人每次能走4个方向, 但不能连续穿越k(0<= k <= ... 
- POJ 1573 Robot Motion(BFS)
		Robot Motion Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12856 Accepted: 6240 Des ... 
- UVA 1600 Patrol Robot(机器人穿越障碍最短路线BFS)
		UVA 1600 Patrol Robot Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu ... 
- C. Robot(BFS)
		C. Robot Time Limit: 3000ms Case Time Limit: 3000ms Memory Limit: 262144KB 64-bit integer IO format: ... 
- UVA12569-Planning mobile robot on Tree (EASY Version)(BFS+状态压缩)
		Problem UVA12569-Planning mobile robot on Tree (EASY Version) Accept:138 Submit:686 Time Limit: 300 ... 
- UVA1600-Patrol Robot(BFS进阶)
		Problem UVA1600-Patrol Robot Accept:529 Submit:4330 Time Limit: 3000 mSec Problem Description A rob ... 
随机推荐
- 【Android开发艺术探索】四大组件的工作过程
			个人博客 http://www.milovetingting.cn 四大组件的工作过程 四大组件:Activity.Service.BroadcastReceiver.ContentProvider ... 
- mysql数据库技术1——基本的增删查改的sql语句
			1.数据库语言的分类 DDL:数据库定义语言 data Definition language 用于创建.修改.和删除数据库内的数据结构,如: 1:创建和删除数据库(CREATE DATABASE | ... 
- PMP--2.2 效益管理计划
			一.文件背景概述 1. 所需文件/数据 制定效益管理计划需要使用商业论证和需求评估中的数据和信息,例如,成本效益分析数据. 成本效益分析数据是在商业论证和需求评估中得到的,在成本效益分析中已经把 ... 
- PMP--1.5 项目管理描述
			项目所处的环境将影响每个项目管理过程的实施方式以及项目制约因素的优先顺序. 一. 管理一个项目的过程 管理一个项目通常包括(但不限于): 1. 识别项目需求 2. 处理相关方的各种需要.关注和期望 ... 
- Thingsboard之MQTT设备协议简介
			MQTT基础知识 MQTT是一种轻量级的发布 - 订阅消息传递协议,可能使其最适合各种物联网设备.您可以在此处找到有关MQTT的更多信息.ThingsBoard服务器节点充当MQTT Broker,支 ... 
- 洛谷新手题 P1028 数的计算题解
			题目描述 我们要求找出具有下列性质数的个数(包含输入的自然数nn): 先输入一个自然数nn(n \le 1000n≤1000),然后对此自然数按照如下方法进行处理: 不作任何处理; 在它的左边加上一个 ... 
- centos7系统中忘记了root管理员账号密码的解决方式
			随着计算机的使用越来越普遍,现在的用户都会有多个密码,不是这软件的密码就是那个的,QQ.邮箱.游戏,还有系统的登录密码!每一个密码都不一样!所以越来越多的密码需要去记住!也因为这样,只要其中一个长时间 ... 
- 【spring boot】SpringBoot初学(9.1)– 简单配置corsFilter对跨域请求支持
			前言 只是简单的配置实现了cors,并没有讲任何东西.(有兴趣的可看: CORS 跨域 实现思路及相关解决方案) github: https://github.com/vergilyn/SpringB ... 
- JavaSE学习笔记(7)---数组
			JavaSE学习笔记(7)---数组 1.什么是数组 数组是相同类型数据的有序集合.数组描述的是相同类型的若干个数据,按照一定的先后次序排列组合而成.其中,每一个数据称作一个元素,每个元素可以通过一个 ... 
- CentOS 7 版本配置salt-master salt-minion
			下载saltshaker_api.git [root@linux-node1 salt]# cd $HOME [root@linux-node1 salt]# git clone https://gi ... 
