The Robot Moving Institute is using a robot in their local store to transport different items. Of course the robot should spend only the minimum time necessary when travelling from one place in the store to another. The robot can move only along a straight line (track). All tracks form a rectangular grid. Neighbouring tracks are one meter apart. The store is a rectangle N x M meters and it is entirely covered by this grid. The distance of the track closest to the side of the store is exactly one meter. The robot has a circular shape with diameter equal to 1.6 meter. The track goes through the center of the robot. The robot always faces north, south, west or east. The tracks are in the south-north and in the west-east directions. The robot can move only in the direction it faces. The direction in which it faces can be changed at each track crossing. Initially the robot stands at a track crossing. The obstacles in the store are formed from pieces occupying 1m x 1m on the ground. Each obstacle is within a 1 x 1 square formed by the tracks. The movement of the robot is controlled by two commands. These commands are GO and TURN.

The GO command has one integer parameter n in {1,2,3}. After receiving this command the robot moves n meters in the direction it faces.

The TURN command has one parameter which is either left or right. After receiving this command the robot changes its orientation by 90o in the direction indicated by the parameter.

The execution of each command lasts one second.

Help researchers of RMI to write a program which will determine the minimal time in which the robot can move from a given starting point to a given destination.

Input

The input consists of blocks of lines. The first line of each block contains two integers M <= 50 and N <= 50 separated by one space. In each of the next M lines there are N numbers one or zero separated by one space. One represents obstacles and zero represents empty squares. (The tracks are between the squares.) The block is terminated by a line containing four positive integers B1 B2 E1 E2 each followed by one space and the word indicating the orientation of the robot at the starting point. B1, B2 are the coordinates of the square in the north-west corner of which the robot is placed (starting point). E1, E2 are the coordinates of square to the north-west corner of which the robot should move (destination point). The orientation of the robot when it has reached the destination point is not prescribed. We use (row, column)-type coordinates, i.e. the coordinates of the upper left (the most north-west) square in the store are 0,0 and the lower right (the most south-east) square are M - 1, N - 1. The orientation is given by the words north or west or south or east. The last block contains only one line with N = 0 and M = 0.

Output

The output contains one line for each block except the last block in the input. The lines are in the order corresponding to the blocks in the input. The line contains minimal number of seconds in which the robot can reach the destination point from the starting point. If there does not exist any path from the starting point to the destination point the line will contain -1.

Sample Input

9 10
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0
7 2 2 7 south
0 0


Sample Output

12

题解:

具有两种操作的广搜,和普通的广搜相比有些不同,普通的广搜一般是一种操作,上下左右,
这一题加上了转向。同时还要注意的是这个机器人本身的大小,这个也就确定了,边界上它是走不了的。

 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#define ll long long
using namespace std;
const int MAX = ;
const int INF = <<;
const int dir[][]{{-,},{,},{,},{,-}};
struct Nod{
int x,y,t,d;
bool operator < (const Nod &a) const{
return t > a.t;
}
};
int g[MAX][MAX], n, m, mark[MAX][MAX][];
int bfs(int bx, int by, int ex, int ey, int f) {
priority_queue<Nod> que;
Nod nod;
mark[bx][by][f] = ;
que.push((Nod){bx,by,,f});
while(!que.empty()) {
nod = que.top();
que.pop();
int x = nod.x, y = nod.y;
if(x == ex && y == ey) return nod.t;
int d = nod.d;
if(mark[x][y][(d+)%] == - || mark[x][y][(d+)%] > nod.t + ){
mark[x][y][(d+)%] = nod.t+;
que.push((Nod){x,y,nod.t+,(d+)%});
}
if(mark[x][y][(d-+)%] == - || mark[x][y][(d-+)%] > nod.t + ){
mark[x][y][(d-+)%] = nod.t + ;
que.push((Nod){x,y,nod.t+,(d-+)%});
}
int nx = x, ny = y;
for(int i = ; i <= ; i ++) {
nx += dir[d][];
ny += dir[d][];
if(nx <= || nx >= m || ny <= || ny >= n)break;
if(g[nx][ny] == || g[nx-][ny] == || g[nx][ny-] == || g[nx-][ny-] == ) break;
if(mark[nx][ny][d] == - || mark[nx][ny][d] > nod.t+){
mark[nx][ny][d] = nod.t+;
que.push((Nod){nx,ny,nod.t+,d});
}
}
}
return -;
}
int main() {
int bx, by, ex, ey, d, ans;
char str[];
while(scanf("%d%d",&m,&n)&&(n+m)) {
for(int i = ; i < m; i ++) {
for(int j = ; j < n; j ++) {
scanf("%d",&g[i][j]);
}
}
scanf("%d %d %d %d %s",&bx,&by,&ex,&ey,str);
if(str[] == 'n') d = ;
else if(str[] == 'e') d = ;
else if(str[] == 's') d = ;
else if(str[] == 'w') d = ;
memset(mark,-,sizeof(mark));
ans = bfs(bx,by,ex,ey,d);
printf("%d\n",ans);
}
return ;
}

ZOJ1310-Robot (BFS)的更多相关文章

  1. UVa 1600 Patrol Robot (BFS最短路 && 略不一样的vis标记)

    题意 : 机器人要从一个m * n 网格的左上角(1,1) 走到右下角(m, n).网格中的一些格子是空地(用0表示),其他格子是障碍(用1表示).机器人每次可以往4个方向走一格,但不能连续地穿越k( ...

  2. poj 2688 Cleaning Robot bfs+dfs

    题目链接 首先bfs, 求出两两之间的距离, 然后dfs就可以. #include <iostream> #include <cstdio> #include <algo ...

  3. Uva 1600 Patrol Robot (BFS 最短路)

    这道题运用的知识点是求最短路的算法.一种方法是利用BFS来求最短路. 需要注意的是,我们要用一个三维数组来表示此状态是否访问过,而不是三维数组.因为相同的坐标可以通过不同的穿墙方式到达. #inclu ...

  4. Japan 2005 Domestic Cleaning Robot /// BFS 状压 二进制位运算 结构体内构造函数 oj22912

    题目大意: 输入w h,接下来输入h行w列的图 ' . ':干净的点:  ' * ' :垃圾:  ' x ' : 墙:  ' o ' : 初始位置: 输出 清理掉所有垃圾的最短路径长度 无则输出-1 ...

  5. UVa 1600 Patrol Robot(BFS)

    题意: 给定一个n*m的图, 有一个机器人需要从左上角(1,1)到右下角(n,m), 网格中一些格子是空地, 一些格子是障碍, 机器人每次能走4个方向, 但不能连续穿越k(0<= k <= ...

  6. POJ 1573 Robot Motion(BFS)

    Robot Motion Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12856   Accepted: 6240 Des ...

  7. UVA 1600 Patrol Robot(机器人穿越障碍最短路线BFS)

    UVA 1600 Patrol Robot   Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu   ...

  8. C. Robot(BFS)

    C. Robot Time Limit: 3000ms Case Time Limit: 3000ms Memory Limit: 262144KB 64-bit integer IO format: ...

  9. UVA12569-Planning mobile robot on Tree (EASY Version)(BFS+状态压缩)

    Problem UVA12569-Planning mobile robot on Tree (EASY Version) Accept:138  Submit:686 Time Limit: 300 ...

  10. UVA1600-Patrol Robot(BFS进阶)

    Problem UVA1600-Patrol Robot Accept:529  Submit:4330 Time Limit: 3000 mSec Problem Description A rob ...

随机推荐

  1. 五分钟后,你将真正理解MySQL事务隔离级别!

    什么是事务? 事务是一组原子性的SQL操作,所有操作必须全部成功完成,如果其中有任何一个操作因为崩溃或其他原因无法执行,那么所有的操作都不会被执行.也就是说,事务内的操作,要么全部执行成功,要么全部执 ...

  2. Eversipn STT-MRAM的MJT细胞

    业界一直在寻求取代SRAM.其中之一包括自旋转移力矩MRAM(STT-MRAM).新的存储器带来了一些大胆的主张.例如STT-MRAM具有SRAM的速度和闪存的无波动性,具有无限的耐用性. 图1.ST ...

  3. itest(爱测试) 4.5.0 发布,开源BUG 跟踪管理 & 敏捷测试管理软件

    itest 简介 test 开源敏捷测试管理,testOps 践行者.可按测试包分配测试用例执行,也可建测试迭代(含任务,测试包,BUG)来组织测试工作,也有测试环境管理,还有很常用的测试度量:对于发 ...

  4. python提取图片内容并转换成对应表格的markdown代码

    本节我们将介绍使用python识别一张图片中的内容,并试着得到一张表格,当然并不是类似于Excel的表格,而是该表格的markdown代码. 注:原创内容,转载请标明出处! 相关工具的安装 本次实验环 ...

  5. 接口文档word版

    一. 分类中某某某接口 接口说明: 请求URL: http://120.26.212.11:8199/xhcms/catalogFirst 请求参数说明: 参数名 必选 类型 参数说明 返回: {&q ...

  6. jQuery---jQuery插件

    jQuery插件 使用插件的步骤 1. 引入jQuery文件 2. 引入插件(如果有用到css的话,需要引入css) 3. 使用插件 <!--1. 引入jquery的js文件--> < ...

  7. HTML表单概念、语法及创建表单,案例

    form 标签 Input标签的type属性值 单行文本域 <input type="text" /> 图像域(图像提交按钮) 下拉菜单和列表标签 select 标签属 ...

  8. centos7 lnmp环境搭建

    1- 安装gcc c++编译器 yum install gcc gcc-c++ cmake 2- 安装nginx-1.8.1及依赖包 2.1- 安装nginx依赖包 yum -y install pc ...

  9. IP后面带/30 /29 /27等是什么意思?

    那个代表你网络的位数,也就是能判断子网掩码.比如30 说明就是11111111.11111111.11111111.11111100 (30个1,2个0)然后转换成十进制就是255.255.255.2 ...

  10. Tunnel Warfare HDU - 1540

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> us ...