Recently, I was writing module of feature engineering, i found two excellently packages -- tsfresh and sklearn.

tsfresh has been specialized for data of time series, tsfresh mainly include two modules, feature extract, and feature select:

 from tsfresh import feature_selection, feature_extraction

To limit the number of irrelevant features tsfresh deploys the fresh algorithms. The whole process consists of three steps.

Firstly.  the algorithm characterizes time series with comprehensive and well-established feature mappings. the feature calculators used to derive the features are contained in tsfresh.feature_extraction.feature_calculators.

In a second step, each extracted feature vector is individually and evaluated with respect to its significance for predicting the target under investigation, those tests are contained in submodule tsfresh.feature_selection.significance_tests. the result of a significance test is a vector of p-value, quantifying the significance of each feature for predicting the target.

Finally, the vector of p-value is evaluated base on basis of the Benjamini-Yekutieli procedure in order to decide which feature could keep.

In summary, the tsfresh is a scalable and efficiency tool of feature engineering.

although the function of tsfresh was powerful, i choose sklearn.

I download data which is the heart disease data set. the data set target is binary and has a 13 dimension feature, I was just used MinMaxScaler to transform age,trestbps,chol three columns, the model had a choiced ensemble of AutoSklearnClassifer and ensemble of RandomForest. but bad performance for two models.

from sklearn.preprocessing import MinMaxScaler,StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from numpy import set_printoptions, inf
set_printoptions(threshold=inf)
import pandas as pd
data = pd.read_csv("../data_set/heart.csv")
X = data[data.columns[:data.shape[1] - 1]].values
y = data[data.columns[-1]].values data = MinMaxScaler().fit_transform(X[:, [0, 3, 4, 7]])
X[:, [0, 3, 4, 7]] = data
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) from autosklearn.classification import AutoSklearnClassifier
model_auto = AutoSklearnClassifier(time_left_for_this_task=120, n_jobs=3, include_preprocessors=["no_preprocessing"], seed=3)
model_auto.fit(x_train, y_train) from sklearn.metrics import accuracy_score
y_pred = model_auto.predict(x_test)
accuracy_score(y_test, y_pred) >>> 0.8021978021978022 from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=500)
y_pred_rf = model.predict(x_test)
accuracy_score(y_test, y_pred_rf) >>> 0.8051648351648352

My personal web site which provides automl service, I upload this data set to my service, it gets a better score than my code: http://simple-code.cn/

The sklearn preprocessing的更多相关文章

  1. 数据规范化——sklearn.preprocessing

    sklearn实现---归类为5大类 sklearn.preprocessing.scale()(最常用,易受异常值影响) sklearn.preprocessing.StandardScaler() ...

  2. 【sklearn】数据预处理 sklearn.preprocessing

    数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization ...

  3. sklearn.preprocessing.LabelBinarizer

    sklearn.preprocessing.LabelBinarizer

  4. sklearn.preprocessing.LabelEncoder的使用

    在训练模型之前,我们通常都要对训练数据进行一定的处理.将类别编号就是一种常用的处理方法,比如把类别"男","女"编号为0和1.可以使用sklearn.prepr ...

  5. sklearn preprocessing (预处理)

    预处理的几种方法:标准化.数据最大最小缩放处理.正则化.特征二值化和数据缺失值处理. 知识回顾: p-范数:先算绝对值的p次方,再求和,再开p次方. 数据标准化:尽量将数据转化为均值为0,方差为1的数 ...

  6. 11.sklearn.preprocessing.LabelEncoder的作用

    In [5]: from sklearn import preprocessing ...: le =preprocessing.LabelEncoder() ...: le.fit(["p ...

  7. sklearn学习笔记(一)——数据预处理 sklearn.preprocessing

    https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standar ...

  8. sklearn.preprocessing.StandardScaler 离线使用 不使用pickle如何做

    Having said that, you can query sklearn.preprocessing.StandardScaler for the fit parameters: scale_ ...

  9. sklearn.preprocessing OneHotEncoder——仅仅是数值型字段才可以,如果是字符类型字段则不能直接搞定

    >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() > ...

  10. pandas 下的 one hot encoder 及 pd.get_dummies() 与 sklearn.preprocessing 下的 OneHotEncoder 的区别

    sklearn.preprocessing 下除了提供 OneHotEncoder 还提供 LabelEncoder(简单地将 categorical labels 转换为不同的数字): 1. 简单区 ...

随机推荐

  1. [Python-memcached]Python操作memcached

    安装python-memchached插件 pip install python-memcached Collecting python-memcached Downloading python_me ...

  2. HDU 5234 背包。

    J - 10 Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  3. 大数相加-----杭电acm1002

    #include<stdio.h> #include<string.h> int main() { ], ch2[]; ], num2[]; ; scanf("%d& ...

  4. clr via c# clr寄宿和AppDomain (一)

    1 clr寄宿-----.net framework在windows平台的顶部允许.者意味着.net framework必须用windows能理解的技术来构建.所有托管模块和程序集文件必须使用wind ...

  5. StarUML之五、StarUMl中Formatting Diagram-格式化图

    这章比较简单,主要是对视图元素的样式调整 主要是在视图元素右下角设置,可以修改视图元素的相关样式 字体样式 颜色 链接线样式 对齐样式 Stereotype Display-视图元素的样式属性 菜单F ...

  6. openlayers6结合geoserver实现地图矢量瓦片(附源码下载)

    内容概览 1.基于openlayers6结合geoserver实现地图矢量瓦片2.源代码demo下载 效果图如下: 实现思路:利用Geoserver发布矢量切片服务,然后openlayers调用矢量瓦 ...

  7. Windows应急响应和系统加固(2)——Windows应急响应的命令使用和安全检查分析

    Windows应急响应的命令使用和安全检查分析 1.获取IP地址: ·ipconfig /all,获取Windows主机IP地址信息: ·ipconfig /release,释放网络IP位置: ·ip ...

  8. Centos7.6 Mysql数据库自动备份配置

    1.查看磁盘空间情况 执行 df -h 选择剩余空间最大的目录 (以/目录为例) 2.创建备份目录: cd / mkdir backup cd backup 3.创建备份Shell脚本: vim mo ...

  9. 线段树区间染色 ZOJ 1610

    Count the Colors ZOJ - 1610 传送门 线段树区间染色求染色的片段数 #include <cstdio> #include <iostream> #in ...

  10. go 函数传递结构体

    我定义了一个结构体,想要在函数中改变结构体的值,记录一下,以防忘记 ep: type Matrix struct{ rowlen int columnlen int list []int } 这是一个 ...