Recently, I was writing module of feature engineering, i found two excellently packages -- tsfresh and sklearn.

tsfresh has been specialized for data of time series, tsfresh mainly include two modules, feature extract, and feature select:

 from tsfresh import feature_selection, feature_extraction

To limit the number of irrelevant features tsfresh deploys the fresh algorithms. The whole process consists of three steps.

Firstly.  the algorithm characterizes time series with comprehensive and well-established feature mappings. the feature calculators used to derive the features are contained in tsfresh.feature_extraction.feature_calculators.

In a second step, each extracted feature vector is individually and evaluated with respect to its significance for predicting the target under investigation, those tests are contained in submodule tsfresh.feature_selection.significance_tests. the result of a significance test is a vector of p-value, quantifying the significance of each feature for predicting the target.

Finally, the vector of p-value is evaluated base on basis of the Benjamini-Yekutieli procedure in order to decide which feature could keep.

In summary, the tsfresh is a scalable and efficiency tool of feature engineering.

although the function of tsfresh was powerful, i choose sklearn.

I download data which is the heart disease data set. the data set target is binary and has a 13 dimension feature, I was just used MinMaxScaler to transform age,trestbps,chol three columns, the model had a choiced ensemble of AutoSklearnClassifer and ensemble of RandomForest. but bad performance for two models.

from sklearn.preprocessing import MinMaxScaler,StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from numpy import set_printoptions, inf
set_printoptions(threshold=inf)
import pandas as pd
data = pd.read_csv("../data_set/heart.csv")
X = data[data.columns[:data.shape[1] - 1]].values
y = data[data.columns[-1]].values data = MinMaxScaler().fit_transform(X[:, [0, 3, 4, 7]])
X[:, [0, 3, 4, 7]] = data
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) from autosklearn.classification import AutoSklearnClassifier
model_auto = AutoSklearnClassifier(time_left_for_this_task=120, n_jobs=3, include_preprocessors=["no_preprocessing"], seed=3)
model_auto.fit(x_train, y_train) from sklearn.metrics import accuracy_score
y_pred = model_auto.predict(x_test)
accuracy_score(y_test, y_pred) >>> 0.8021978021978022 from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=500)
y_pred_rf = model.predict(x_test)
accuracy_score(y_test, y_pred_rf) >>> 0.8051648351648352

My personal web site which provides automl service, I upload this data set to my service, it gets a better score than my code: http://simple-code.cn/

The sklearn preprocessing的更多相关文章

  1. 数据规范化——sklearn.preprocessing

    sklearn实现---归类为5大类 sklearn.preprocessing.scale()(最常用,易受异常值影响) sklearn.preprocessing.StandardScaler() ...

  2. 【sklearn】数据预处理 sklearn.preprocessing

    数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization ...

  3. sklearn.preprocessing.LabelBinarizer

    sklearn.preprocessing.LabelBinarizer

  4. sklearn.preprocessing.LabelEncoder的使用

    在训练模型之前,我们通常都要对训练数据进行一定的处理.将类别编号就是一种常用的处理方法,比如把类别"男","女"编号为0和1.可以使用sklearn.prepr ...

  5. sklearn preprocessing (预处理)

    预处理的几种方法:标准化.数据最大最小缩放处理.正则化.特征二值化和数据缺失值处理. 知识回顾: p-范数:先算绝对值的p次方,再求和,再开p次方. 数据标准化:尽量将数据转化为均值为0,方差为1的数 ...

  6. 11.sklearn.preprocessing.LabelEncoder的作用

    In [5]: from sklearn import preprocessing ...: le =preprocessing.LabelEncoder() ...: le.fit(["p ...

  7. sklearn学习笔记(一)——数据预处理 sklearn.preprocessing

    https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standar ...

  8. sklearn.preprocessing.StandardScaler 离线使用 不使用pickle如何做

    Having said that, you can query sklearn.preprocessing.StandardScaler for the fit parameters: scale_ ...

  9. sklearn.preprocessing OneHotEncoder——仅仅是数值型字段才可以,如果是字符类型字段则不能直接搞定

    >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() > ...

  10. pandas 下的 one hot encoder 及 pd.get_dummies() 与 sklearn.preprocessing 下的 OneHotEncoder 的区别

    sklearn.preprocessing 下除了提供 OneHotEncoder 还提供 LabelEncoder(简单地将 categorical labels 转换为不同的数字): 1. 简单区 ...

随机推荐

  1. MyBatis 与Ibatis 区别

    Ibatis 是 Mybatis 的前身,两者都是优秀的持久层框架. 区别: 1.mybatis 实现接口绑定,不需要具体接口实现类.但是需要在xml文件中 的 namespace 绑定具体的接口. ...

  2. codewars--js--Large Factorials--阶乘+大数阶乘

    问题描述: In mathematics, the factorial of integer n is written as n!. It is equal to the product of n a ...

  3. Java数据结构--双向链表的实现

    #java学习经验总结------双向链表的实现 双向链表的建立与单链表类似,只是需要使用pre指针指向前一个结点,并且在删除添加时不仅仅考虑next package datastructure; p ...

  4. Galactic Collegiate Programming Contest Gym - 101572G 模拟

    #include<bits/stdc++.h> using namespace std; int n,m; struct node { int id; int slove; int pen ...

  5. 使用 TypeScript & mocha & chai 写测试代码实战(17 个视频)

    使用 TypeScript & mocha & chai 写测试代码实战(17 个视频) 使用 TypeScript & mocha & chai 写测试代码实战 #1 ...

  6. 制作MySQL RPM安装包Spec

    适用环境: 数据库版本:MySQL 操作系统:CentOS 7 制作思路: 将数据库初始化和配置工作放到安装脚本中方便定制: 1.打包MySQL应用目录 2.不自动生成配置文件 3.不自动生成数据目录 ...

  7. opencv —— copyTo 设置与操作感兴趣区域(ROI)

    感兴趣区域:ROI 对感兴趣区域进行的一系列操作,相当于直接在原图相应部分进行操作. Mat imageROI = srcImage(Rect(0,0,dstImage.cols, dstImage. ...

  8. 【47】迁移学习(Transfer Learning)

    迁移学习(Transfer Learning) 如果你要做一个计算机视觉的应用,相比于从头训练权重,或者说从随机初始化权重开始,如果你下载别人已经训练好网络结构的权重,你通常能够进展的相当快,用这个作 ...

  9. [Python] 前程无忧招聘网爬取软件工程职位 网络爬虫 https://www.51job.com

    首先进入该网站的https://www.51job.com/robots.txt页面 给出提示: 找不到该页 File not found 您要查看的页已删除,或已改名,或暂时不可用. 请尝试以下操作 ...

  10. SpringBoot从1.5.1→2.2.4项目加包扫雷一:Error:(8, 44) java: 程序包org.springframework.boot.web.support不存在

    更换成新包即可import org.springframework.boot.web.servlet.support.SpringBootServletInitializer;