展开

\(D=(AB-C)A^T\\
=\sum_{i=1}^n(\sum_{j=1}^na_jb_{j,i}-c_i)a_i\\
=\sum_{i=1}^n\sum_{j=1}^na_ia_jb_{i,j}-\sum_{i=1}^na_ic_i\)

对每一对 \(i,j\),同时选获得 \(b_{ij}+b_{ji}\)

某个 \(i\) 不选,额外损失 \(c_i\)

考虑最大权闭合子图

\(S \to (i,j)= b_{ij}+b_{ji}\)

\((i,j) \to i (j) = \infty\)

\(i \to T= c_i\)

跑最大流即可,最后用 \(\sum b_{ij}\) 减去答案

#include <bits/stdc++.h>
using namespace std; const int inf = 1e+9; namespace flow { const int maxn = 300005;
const int inf = 1e+9; int dis[maxn], ans, cnt = 1, s, t, pre[maxn * 10], nxt[maxn * 10], h[maxn], v[maxn * 10];
std::queue<int> q;
void make(int x, int y, int z) {
pre[++cnt] = y, nxt[cnt] = h[x], h[x] = cnt, v[cnt] = z;
pre[++cnt] = x, nxt[cnt] = h[y], h[y] = cnt;
}
bool bfs() {
memset(dis, 0, sizeof dis);
q.push(s), dis[s] = 1;
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = h[x]; i; i = nxt[i])
if (!dis[pre[i]] && v[i])
dis[pre[i]] = dis[x] + 1, q.push(pre[i]);
}
return dis[t];
}
int dfs(int x, int flow) {
if (x == t || !flow)
return flow;
int f = flow;
for (int i = h[x]; i; i = nxt[i])
if (v[i] && dis[pre[i]] > dis[x]) {
int y = dfs(pre[i], min(v[i], f));
f -= y, v[i] -= y, v[i ^ 1] += y;
if (!f)
return flow;
}
if (f == flow)
dis[x] = -1;
return flow - f;
}
int solve(int _s,int _t) {
s=_s;
t=_t;
ans = 0;
for (; bfs(); ans += dfs(s, inf));
return ans;
}
} int n,b[505][505],c[505]; int id_node(int p) {
return 2+p;
} int id_pair(int p,int q) {
return 2+p*n+q;
} int main() {
scanf("%d",&n);
int sum = 0;
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
scanf("%d",&b[i][j]);
sum += b[i][j];
flow::make(1,id_pair(i,j),b[i][j]);
flow::make(id_pair(i,j),id_node(i),inf);
flow::make(id_pair(i,j),id_node(j),inf);
}
}
for(int i=1;i<=n;i++) {
scanf("%d",&c[i]);
flow::make(id_node(i),2,c[i]);
}
cout<<sum - flow::solve(1,2);
}

[TJOI2015] 线性代数 - 最大权闭合子图的更多相关文章

  1. BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)

    Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...

  2. bzoj 3996 线性代数 —— 最大权闭合子图

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 把题中的式子拆开看看,发现就是如下关系: 如果 a[i] == 1 && ...

  3. 【BZOJ3996】[TJOI2015]线性代数 最大权闭合图

    [BZOJ3996][TJOI2015]线性代数 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的 ...

  4. BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图

    BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...

  5. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  6. HDU 3879 Base Station(最大权闭合子图)

    经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...

  7. [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...

  8. HDU4971 A simple brute force problem.(强连通分量缩点 + 最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4971 Description There's a company with several ...

  9. HDU5855 Less Time, More profit(最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5855 Description The city planners plan to build ...

随机推荐

  1. Linux安装Redis、后台运行、系统自启动

    Redis是用C语言编写的开源免费的高性能的分布式内存数据库,基于内存运行并支持持久化的NoSQL数据库. 安装 1)从官网http://download.redis.io/releases/下载re ...

  2. 教你一种简单方法给word和PDF格式的文件使用电子签名

      前言  虽然还处在非常时期,但很多公司已陆陆续续复工或准备复工.   上周,人事妹纸给了我们一份,企业员工健康情况申报表.具体如下 现在问题来了,需要本人签名,电脑打上去的不算,需要手写. 此时, ...

  3. 小程序封装request请求

    //request.js var host = 'https://www.xxx.com';//请求域名 module.exports = function (type, params, method ...

  4. springboot快速创建项目框架

    一.项目框架准备 1.1 新建maven空项目,并在pom中引入依赖 <parent> <groupId>org.springframework.boot</groupI ...

  5. MySQL 8 备份与恢复

    备份应用的场景包括:系统崩溃.硬件故障.用户错误.升级MySQL Installation.传输MySQL Installation到另一台机器.设置复制等. Slave Server备份 在备份Sl ...

  6. 图片-定义select向下箭头样式

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  8. P1980 计数问题(int,string,stringstream)

    题目描述 试计算在区间 1 到 n 的所有整数中,数字x(0 ≤ x ≤ 9)共出现了多少次?例如,在 1 到 11 中,即在 1,2,3,4,5,6,7,8,9,10,11 中,数字 1 出现了 4 ...

  9. PyCharm2019 永久激活(测试通过)

    2019.1.1 专业版 永久期限,需要下载补丁,以及配置文件 补丁地址:https://pan.baidu.com/s/16ALpz_BCXjsRkpS_PtD23A 1,下载安装pycharm程序 ...

  10. JAVA输出流与输入流

    输出流 编程入门的第一个程序,输出一串字符串 public class C { public static void main(String[] args) { System.out.println( ...