展开

\(D=(AB-C)A^T\\
=\sum_{i=1}^n(\sum_{j=1}^na_jb_{j,i}-c_i)a_i\\
=\sum_{i=1}^n\sum_{j=1}^na_ia_jb_{i,j}-\sum_{i=1}^na_ic_i\)

对每一对 \(i,j\),同时选获得 \(b_{ij}+b_{ji}\)

某个 \(i\) 不选,额外损失 \(c_i\)

考虑最大权闭合子图

\(S \to (i,j)= b_{ij}+b_{ji}\)

\((i,j) \to i (j) = \infty\)

\(i \to T= c_i\)

跑最大流即可,最后用 \(\sum b_{ij}\) 减去答案

#include <bits/stdc++.h>
using namespace std; const int inf = 1e+9; namespace flow { const int maxn = 300005;
const int inf = 1e+9; int dis[maxn], ans, cnt = 1, s, t, pre[maxn * 10], nxt[maxn * 10], h[maxn], v[maxn * 10];
std::queue<int> q;
void make(int x, int y, int z) {
pre[++cnt] = y, nxt[cnt] = h[x], h[x] = cnt, v[cnt] = z;
pre[++cnt] = x, nxt[cnt] = h[y], h[y] = cnt;
}
bool bfs() {
memset(dis, 0, sizeof dis);
q.push(s), dis[s] = 1;
while (!q.empty()) {
int x = q.front();
q.pop();
for (int i = h[x]; i; i = nxt[i])
if (!dis[pre[i]] && v[i])
dis[pre[i]] = dis[x] + 1, q.push(pre[i]);
}
return dis[t];
}
int dfs(int x, int flow) {
if (x == t || !flow)
return flow;
int f = flow;
for (int i = h[x]; i; i = nxt[i])
if (v[i] && dis[pre[i]] > dis[x]) {
int y = dfs(pre[i], min(v[i], f));
f -= y, v[i] -= y, v[i ^ 1] += y;
if (!f)
return flow;
}
if (f == flow)
dis[x] = -1;
return flow - f;
}
int solve(int _s,int _t) {
s=_s;
t=_t;
ans = 0;
for (; bfs(); ans += dfs(s, inf));
return ans;
}
} int n,b[505][505],c[505]; int id_node(int p) {
return 2+p;
} int id_pair(int p,int q) {
return 2+p*n+q;
} int main() {
scanf("%d",&n);
int sum = 0;
for(int i=1;i<=n;i++) {
for(int j=1;j<=n;j++) {
scanf("%d",&b[i][j]);
sum += b[i][j];
flow::make(1,id_pair(i,j),b[i][j]);
flow::make(id_pair(i,j),id_node(i),inf);
flow::make(id_pair(i,j),id_node(j),inf);
}
}
for(int i=1;i<=n;i++) {
scanf("%d",&c[i]);
flow::make(id_node(i),2,c[i]);
}
cout<<sum - flow::solve(1,2);
}

[TJOI2015] 线性代数 - 最大权闭合子图的更多相关文章

  1. BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)

    Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...

  2. bzoj 3996 线性代数 —— 最大权闭合子图

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 把题中的式子拆开看看,发现就是如下关系: 如果 a[i] == 1 && ...

  3. 【BZOJ3996】[TJOI2015]线性代数 最大权闭合图

    [BZOJ3996][TJOI2015]线性代数 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的 ...

  4. BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图

    BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...

  5. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  6. HDU 3879 Base Station(最大权闭合子图)

    经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...

  7. [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...

  8. HDU4971 A simple brute force problem.(强连通分量缩点 + 最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4971 Description There's a company with several ...

  9. HDU5855 Less Time, More profit(最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5855 Description The city planners plan to build ...

随机推荐

  1. C#制作Wincc组件进行配方管理

    1,安装WinccV7.4并破解: 安装WinccV7.4SP1. 安装授权文件---根据提示 安装免狗驱动,根据提示 安装SImatic.net v13. 2,连接PLC, 首先在同一个局域网里面, ...

  2. mysql必知必会--用正则表达式 进行搜索

    正则表达式介绍 前两章中的过滤例子允许用匹配.比较和通配操作符寻找数据.对 于基本的过滤(或者甚至是某些不那么基本的过滤),这样就足够了.但 随着过滤条件的复杂性的增加, WHERE 子句本身的复杂性 ...

  3. Linux 文件|目录 属性

    文件属性 ls  -l 列出的文件|目录信息如下 第一个字符指定类型,-是文件,d是目录(dir). 后面9个字符是该文件|目录的用户权限:r读,w写,x执行. 执行是指:如果该文件是一个可执行文件, ...

  4. 详细讲解Codeforces Round #624 (Div. 3) E. Construct the Binary Tree(构造二叉树)

    题意:给定节点数n和所有节点的深度总和d,问能否构造出这样的二叉树.能,则输出“YES”,并且输出n-1个节点的父节点(节点1为根节点). 题解:n个节点构成的二叉树中,完全(满)二叉树的深度总和最小 ...

  5. JS笔记之第二天

    一元运算符:++  -- 分为前++和后++ and 前--和后-- 如果++在后面,如:num++ +10参与运算,先参与运算,自身再加1 如果++在前面,如:++num+10参与运算,先自身加1, ...

  6. Docker Stack 学习笔记

    该文为<深入浅出Docker>的学习笔记,感谢查看,如有错误,欢迎指正 一.简介 Docker Stack 是为了解决大规模场景下的多服务部署和管理,提供了期望状态,滚动升级,简单易用,扩 ...

  7. clr via c# 程序集

    1,程序集的种类 强命名程序集 使用了公钥进行签名 可以应用CLR的安全策略.---可以全局部署---可以部署到一些公认位置. 弱命名程序集 只能私有部署----部署到应用程序基目录或其子目录中 2, ...

  8. PPT、Word、Excel模板免费下载

    本篇文章可能只有寥寥数字,但他的作用可能很大,可能帮助到很多朋友.本人喜欢搜集一些资源,也爱免费分享,因为好东西我藏不住,总感觉分享出来更快乐. 网址:https://www.bangongziyua ...

  9. Node.js核心模块-fs文件系统

    fs是file-system的简写,文件系统的意思.在Node中如果想要进行文件操作,就必须引入fs这个核心模块. 引入 const fs = require('fs') fs.readFile(pa ...

  10. linux命令绕过

    前言: 做ctf时常常会遇到一些正则匹配将一些linux命令给过滤掉,这里将总结一些针对性的绕过方式. 一.空格绕过: {cat,flag.txt} cat${IFS}flag.txt cat$IFS ...