「JSOI2015」染色问题
「JSOI2015」染色问题
虽然不是第一反应,不过还是想到了要容斥。
题意转化:需要求满足 \(N + M + C\) 个条件的方案数。
然后我们就枚举三个数 \(i, j, k\) ,表示当前方案中,至少不用 \(k\) 种颜色,至少不涂 \(i\) 行、至少不涂 \(j\) 列。
然后直接组合数算(式子不难看懂),最后容斥即可。
那么写出来就是:
\]
参考代码:
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
const int _ = 404, p = 1e9 + 7;
int n, m, c, N, x, ans, C[_][_], pow[_][_ * _];
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(n), read(m), read(c);
if (N < n) N = n; if (N < m) N = m; if (N < c) N = c;
for (rg int i = 0; i <= N; ++i) C[i][0] = 1;
for (rg int i = 1; i <= N; ++i)
for (rg int j = 1; j <= i; ++j)
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % p;
for (rg int i = 1; i <= c + 1; ++i) pow[i][0] = 1;
for (rg int i = 1; i <= c + 1; ++i)
for (rg int j = 1; j <= n * m; ++j)
pow[i][j] = 1ll * i * pow[i][j - 1] % p;
for (rg int i = 0; i <= n; ++i)
for (rg int j = 0; j <= m; ++j)
for (rg int k = 0; k <= c; ++k) {
x = (i + j + k) & 1 ? -1 : 1;
ans = (ans + 1ll * x * pow[c - k + 1][(n - i) * (m - j)] % p * C[n][i] % p * C[m][j] % p * C[c][k] % p) % p;
}
printf("%d\n", (ans % p + p) % p);
return 0;
}
「JSOI2015」染色问题的更多相关文章
- 「HAOI2018」染色 解题报告
「HAOI2018」染色 是个套路题.. 考虑容斥 则恰好为\(k\)个颜色恰好为\(c\)次的贡献为 \[ \binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k ...
- Loj #3111. 「SDOI2019」染色
Loj #3111. 「SDOI2019」染色 题目描述 给定 \(2 \times n\) 的格点图.其中一些结点有着已知的颜色,其余的结点还没有被染色.一个合法的染色方案不允许相邻结点有相同的染色 ...
- 「JSOI2015」串分割
「JSOI2015」串分割 传送门 首先我们会有一个贪心的想法:分得越均匀越好,因为长的绝对比短的大. 那么对于最均匀的情况,也就是 \(k | n\) 的情况,我们肯定是通过枚举第一次分割的位置,然 ...
- 「JSOI2015」isomorphism
「JSOI2015」isomorphism 传送门 我们还是考虑树哈希来判同构. 但是我们需要使用一些特殊的手段来特殊对待假节点. 由于是无向树,我们首先求出重心,然后以重心为根跑树哈希. 此处我们不 ...
- 「JSOI2015」symmetry
「JSOI2015」symmetry 传送门 我们先考虑构造出原正方形经过 \(4\) 种轴对称变换以及 \(2\) 种旋转变换之后的正方形都构造出来,然后对所得的 \(7\) 个正方形都跑一遍二维哈 ...
- 「JSOI2015」地铁线路
「JSOI2015」地铁线路 传送门 第一问很简单:对于每条线路建一个点,然后所有该条线路覆盖的点向它连边,权值为 \(1\) ,然后它向所有线路上的点连边,权值为 \(0\) . 然后,跑一边最短路 ...
- 「JSOI2015」圈地
「JSOI2015」圈地 传送门 显然是最小割. 首先对于所有房子,权值 \(> 0\) 的连边 \(s \to i\) ,权值 \(< 0\) 的连边 \(i \to t\) ,然后对于 ...
- 「JSOI2015」最小表示
「JSOI2015」最小表示 传送门 很显然的一个结论:一条边 \(u \to v\) 能够被删去,当且仅当至少存在一条其它的路径从 \(u\) 通向 \(v\) . 所以我们就建出正反两张图,对每个 ...
- 「JSOI2015」套娃
「JSOI2015」套娃 传送门 考虑贪心. 首先我们假设所有的套娃都互相不套. 然后我们考虑合并两个套娃 \(i\),\(j\) 假设我们把 \(i\) 套到 \(j\) 里面去,那么就可以减少 \ ...
随机推荐
- Zookeeper学习笔记一
目录 一.zookeeper介绍 二.Zookeeper安装 一.zookeeper介绍 1.概述 Zookeeper是一个开源的分布式的,为分布式应用提供协调服务的Apache项目.Hadoop ...
- php中普通类 接口类 抽象类 浅谈
一.普通类 1.关键词:class 类名,继承关键字extends 2.继承:只能实现单继承, 3.多态:子类继承可以实现多种功能 4.封装:类有权限机制,私有的只能自己用,受保护的可以被继承,子类 ...
- Codeforces Round #600 (Div. 2) D。 Harmonious Graph
#include<iostream> using namespace std ; ; int p[N]; int cnt; int find(int x) { if(p[x]!=x) p[ ...
- 如何面试QA(面试官角度)
面试是一对一 或者多对一的沟通,是和候选人 互相交换信息.平等的. 面试的目标是选择和雇佣最适合的人选.是为了完成组织目标.协助人力判断候选人是否合适空缺职位. 面试类型: (1)预判面试(查看简历后 ...
- ubuntu---【nvcc --version】显示错误,提示 sudo apt-get install nvidia-cuda-toolkit
重装了一下cuda,然后发现nvcc命令不存在了,终端提示使用 : sudo apt-get install nvidia-cuda-toolkit 来使用nvcc. 注意不要使用这种方式安装.系统认 ...
- SharePoint资料
链接:https://pan.baidu.com/s/1QOSShE02LYKXFtoJ58WCQQ 提取码:dnhs 复制这段内容后打开百度网盘手机App,操作更方便哦 SharePoint 200 ...
- [LOJ113] 最大异或和 - 线性基
虽然是SB模板但还真是第一次手工(然而居然又被运算符优先级调戏了) #include <bits/stdc++.h> using namespace std; #define int lo ...
- pytorch save model + Gmatch4py + jupyter debugger + community structure
1. pytorch, 使用训练好的模型测试自己图片 2. [ pytorch ] ——基本使用:(2) 训练好的模型参数的保存以及调用 3. Gmatch4py 4. Network Analysi ...
- MS yc
# word - operate标题栏 菜单栏 工具栏 页面 状态栏 字体阴影 背景色 着重号 项目符号 数字编码 格式刷
- django 搭建一个投票类网站(一)
写在最前,之前零零散散的看过django,但是由于比较杂,学的云里雾里的,所以就停了一段落,但是我最近找到了一个django的书,是李建编著的django入门与实践,于是,打算照着书上的步骤来写好一个 ...