Luogu P1712 [NOI2016]区间(线段树)
题意
题目描述
在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) 。现在要从中选出 \(M\) 个区间,使得这 \(M\) 个区间共同包含至少一个位置。换句话说,就是使得存在一个 \(x\) ,使得对于每一个被选中的区间 \([l_i,r_i]\) ,都有 \(l_i \leq x \leq r_i\) 。
对于一个合法的选取方案,它的花费为被选中的最长区间长度减去被选中的最短区间长度。区间 \([l_i,r_i]\) 的长度定义为 \(r_i-l_i\) ,即等于它的右端点的值减去左端点的值。
求所有合法方案中最小的花费。如果不存在合法的方案,输出 \(-1\) 。
输入输出格式
输入格式:
第一行包含两个正整数 \(N,M\) 用空格隔开,意义如上文所述。保证 \(1 \leq M \leq N\)
接下来 \(N\) 行,每行表示一个区间,包含用空格隔开的两个整数 \(l_i\) 和 \(r_i\) 为该区间的左右端点。
\(N \leq 500000,M \leq 200000,0 \leq l_i \leq r_i \leq 10^9\)
输出格式:
只有一行,包含一个正整数,即最小花费。
输入输出样例
输入样例:
6 3
3 5
1 2
3 4
2 2
1 5
1 4
输出样例:
2
说明


思路
2018-10-6 非完美算法测试唯一的可做题,然后用 \(STL\) 瞎搞了一波,只有 \(60\) 分 \(qwq\) 。赛后学习了 logeadd 的代码,就 \(A\) 掉了。
首先按照区间长度排序,然后我们枚举排序后的 \([1,M]\) 的一段区间 \([L,R]\) ,使得这一段区间能够刚好覆盖住同一个点 \(m\) 次,那么就可以用 \(len[R]-len[L]\) 来更新答案。
枚举区间可以使用尺取法,而判断这一区间是否合法可以用线段树。对于每一个区间 \([l_i,r_i]\) ,我们在线段树上进行这个区间的区间加,然后统计区间最大值,就可以了。当然,这个数据范围是需要离散化的。
AC代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MAXN=5e5+5;
LL n,m,cnt,head,tail,ans=LLONG_MAX,s[MAXN],t[MAXN],num[MAXN<<1];
struct Segment
{
LL l,r,len;
bool operator < (const Segment &sjf) const {return len<sjf.len;}
}seg[MAXN];
struct SegmentTree
{
LL l,r,data,tag;
#define l(a) tree[a].l
#define r(a) tree[a].r
#define d(a) tree[a].data
#define t(a) tree[a].tag
}tree[MAXN<<3];
LL read()
{
LL re=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
void build(LL p,LL ll,LL rr)
{
l(p)=ll,r(p)=rr;
if(ll==rr) return ;
LL mid=(ll+rr)>>1;
build(p<<1,ll,mid);
build(p<<1|1,mid+1,rr);
}
void pushdown(LL p)
{
if(t(p))
{
d(p<<1)+=t(p),d(p<<1|1)+=t(p);
t(p<<1)+=t(p),t(p<<1|1)+=t(p);
t(p)=0;
}
}
void change(LL p,LL ll,LL rr,LL k)
{
if(ll<=l(p)&&r(p)<=rr)
{
t(p)+=k,d(p)+=k;
return ;
}
pushdown(p);
LL mid=(l(p)+r(p))>>1;
if(mid>=ll) change(p<<1,ll,rr,k);
if(mid<rr) change(p<<1|1,ll,rr,k);
d(p)=max(d(p<<1),d(p<<1|1));
}
int main()
{
n=read(),m=read();
for(LL i=1;i<=n;i++) num[cnt++]=seg[i].l=read(),num[cnt++]=seg[i].r=read(),seg[i].len=seg[i].r-seg[i].l;
sort(seg+1,seg+n+1);
sort(num,num+cnt);
cnt=unique(num,num+cnt)-num;
for(LL i=1;i<=n;i++) seg[i].l=lower_bound(num,num+cnt,seg[i].l)-num,seg[i].r=lower_bound(num,num+cnt,seg[i].r)-num;
build(1,0,cnt-1);
while(1)
{
while(d(1)<m&&tail<n)
{
tail++;
change(1,seg[tail].l,seg[tail].r,1);
}
if(d(1)<m) break;
while(d(1)>=m&&head<n)
{
head++;
change(1,seg[head].l,seg[head].r,-1);
}
ans=min(ans,seg[tail].len-seg[head].len);
}
printf("%lld",ans==LLONG_MAX?-1:ans);
return 0;
}
Luogu P1712 [NOI2016]区间(线段树)的更多相关文章
- 洛谷$P1712\ [NOI2016]$区间 线段树
正解:线段树 解题报告: 传送门$QwQ$ $umm$很久以前做的了来补个题解$QwQ$ 考虑给每个区间按权值($r-l$从大往小排序,依次加入,然后考虑如果有一个位置被覆盖次数等于$m$了就可以把权 ...
- luogu P1712 [NOI2016]区间 贪心 尺取法 线段树 二分
LINK:区间 没想到尺取法. 先说暴力 可以发现答案一定可以转换到端点处 所以在每个端点从小到大扫描线段就能得到答案 复杂度\(n\cdot m\) 再说我的做法 想到了二分 可以进行二分答案 从左 ...
- [NOI2016]区间 线段树
[NOI2016]区间 LG传送门 考虑到这题的代价是最长边减最短边,可以先把边按长度排个序,双指针维护一个尺取的过程,如果存在包含某个点的区间数\(\ge m\),就更新答案并把左指针右移,这样做的 ...
- UOJ222 NOI2016 区间 线段树+FIFO队列
首先将区间按长度排序后离散化端点(这里的“长度”指的是离散化之前区间的实际长度) 然后模拟一个队列,区间按排好的顺序依次进入,直到某个点被覆盖了M次.之后依次出队,直到所有点都被覆盖小于M次 修改和询 ...
- BZOJ.4653.[NOI2016]区间(线段树)
BZOJ4653 UOJ222 考虑二分.那么我们可以按区间长度从小到大枚举每个区间,对每个区间可以得到一个可用区间长度范围. 我们要求是否存在一个点被这些区间覆盖至少\(m\)次.这可以用线段树区间 ...
- BZOJ4653 [NOI2016]区间 [线段树,离散化]
题目传送门 区间 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就 ...
- BZOJ4653: [Noi2016]区间(线段树 双指针)
题意 题目链接 Sol 按照dls的说法,一般这一类的题有两种思路,一种是枚举一个点\(M\),然后check它能否成为答案.但是对于此题来说好像不好搞 另一种思路是枚举最小的区间长度是多少,这样我们 ...
- luogu P1712 [NOI2016]区间
题目描述 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就是使得存在一个 x,使得对于每一 ...
- BZOJ4653:[NOI2016]区间(线段树)
Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就是使得存在一个 x ...
随机推荐
- Python文件操作回顾
with open("D:/Temp/a.txt", mode='w', encoding='utf-8') as f: f.write('hello') with open(&q ...
- 激活office2016的心路历程
先转换成VOL版本 32位的office2016用如下代码 @echo off :ADMIN openfiles >nul >nul ||( echo Set UAC = CreateOb ...
- DES加密算法-C语言
头文件:DES.h #ifndef DES_hpp #define DES_hpp #include <stdio.h> #include <memory.h> #includ ...
- CSRF spring mvc 跨站请求伪造防御(转)
CSRF CSRF(Cross-site request forgery跨站请求伪造,也被称为“One Click Attack”或者Session Riding,通常缩写为CSRF或者XSRF,是一 ...
- C++开发系列-C语言的malloc与C++的new分配空间
概述 在软件开发过程中,常常需要动态地分配和撤销存储空间,例如对动态链表中结点的插入与删除.在C语言中是利用库函数malloc和free来分配和撤销内存空间的.C++提供了较简便而功能较强的运算符ne ...
- html--图片背景兼容,兼容IE6
在IE6中对图片格式png24支持度不高, 如果使用的图片格式是png24,则会导致透明效果无法正常显示 解决方法: 1.可以使用png8来代替png24,即可解决问题, 但是使用png8代替png2 ...
- 阶梯nim游戏
阶梯nim游戏有n个阶梯,0-n-1,每个阶梯上有一堆石子,编号为i的阶梯上的石子只能移动到i-1上去,每次至少移动一个,最后所有的石子都移动到0号阶梯上了.结论:奇数阶梯上的石子异或起来,要是0,就 ...
- 三剑客之一------>awk
awk : 一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再 ...
- EL bug 之 javax.el.PropertyNotFoundException: Property 'Sub_Token' not found on type com.sunmo.stPhone.bean.User
javax.el.PropertyNotFoundException: Property 'Sub_Token' not found on type com.sunmo.stPhone.bean.Us ...
- PHP实现图片的汉明码提取与降维
作者感言:数学不好,遇到算法问题分分钟狗带,毫无转寰的余地-_-||| 最近心血来潮,看了相似图片的搜索,最最最初级的方法即提取汉明码,之后匹配汉明距离.当然,在数以亿计的汉明码中,要筛出需要的图片, ...