在推导期望方程时我们常常会遇到dp[i]和其他项有关联,那么这时候我们就难以按某个顺序进行递推

即难以通过已经确定的项来求出新的项

即未知数的相互关系是循环的

但是我们又可以确定和dp[i]相关联的项是有规律的,即存在一个可以递推dp[i]的通项公式,那么不妨设置未知数,通过原方程的迭代来打破这种循环

为了完成递推,我们需要通过递推和dp[i]有关的参数来间接求出dp[i]

比如递推方程dp[i]总是和dp[1]有关,那么我们可以肯定dp[i]=ai*dp[1]+b[i]

那么用这个方程进行迭代,最后可以发现ai是能够逆着递推的

zoj3329:dp[i]=a[i]dp[0]+b[i]

这题dp[i]总是和dp[0]有关,假设dp[i+k]的值都知道了(等价于常数b[i]),那么a[i]就是个可以递推的项

hdu:dp[i][j]=a[j]*dp[i][i]+c[j]

hdu4035:树上迭代,因为正常的顺序是从叶子推导到根,但是每个结点会受到dp[rt]和dp[fa]的影响, 所以这两项要用两个参数来迭代

  dp[u]=a[u]*dp[rt]+b[u]*dp[fa]+c[u]

#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath> using namespace std; const int MAXN = + ; double e[MAXN], k[MAXN];
double A[MAXN], B[MAXN], C[MAXN]; vector<int> v[MAXN]; bool search(int i, int fa)
{
if ( v[i].size() == && fa != - )
{
A[i] = k[i];
B[i] = - k[i] - e[i];
C[i] = - k[i] - e[i];
return true;
} A[i] = k[i];
B[i] = ( - k[i] - e[i]) / v[i].size();
C[i] = - k[i] - e[i];
double tmp = ; for (int j = ; j < (int)v[i].size(); j++)
{
if ( v[i][j] == fa ) continue;
if ( !search(v[i][j], i) ) return false;
A[i] += A[v[i][j]] * B[i];
C[i] += C[v[i][j]] * B[i];
tmp += B[v[i][j]] * B[i];
}
if ( fabs(tmp - ) < 1e- ) return false;
A[i] /= - tmp;
B[i] /= - tmp;
C[i] /= - tmp;
return true;
} int main()
{
int nc, n, s, t; cin >> nc;
for (int ca = ; ca <= nc; ca++)
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
v[i].clear(); for (int i = ; i < n; i++)
{
scanf("%d%d",&s,&t);
v[s].push_back(t);
v[t].push_back(s);
}
for (int i = ; i <= n; i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i] /= 100.0;
e[i] /= 100.0;
} cout << "Case " << ca << ": ";
if ( search(, -) && fabs( - A[]) > 1e- )
cout << C[]/( - A[]) << endl;
else
cout << "impossible" << endl;
}
return ;
}

概率dp的迭代方式小结——zoj3329,hdu4089,hdu4035的更多相关文章

  1. ZOJ 3329-One Person Game(概率dp,迭代处理环)

    题意: 三个色子有k1,2,k3个面每面标号(1-k1,1-k2,1-k3),一次抛三个色子,得正面向上的三个编号,若这三个标号和给定的三个编号a1,b1,c1对应则总和置零,否则总和加上三个色子标号 ...

  2. ZOJ3329之经典概率DP

    One Person Game Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge There is a very ...

  3. 概率dp小结

    好久之前学过,记得是一次亚洲区的前几天看了看概率dp,然后亚洲区就出了一道概率dp,当时虽然做上了,但是感觉有很多地方没懂,今天起早温习了一下,觉得很多地方茅塞顿开,果然学习的话早上效果最好了. 首先 ...

  4. HDU4089/Uva1498 Activation 概率DP(好题)

    题意:Tomato要在服务器上激活一个游戏,一开始服务器序列中有N个人,他排在第M位,每次服务器会对序列中第一位的玩家进行激活,有四种结果: 1.有p1的概率会激活失败,这时候序列的状态是不变的.2. ...

  5. [HDU 4089]Activation[概率DP]

    题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...

  6. 动态规划之经典数学期望和概率DP

    起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱 ...

  7. HDU 4576 Robot(概率dp)

    题目 /*********************复制来的大致题意********************** 有N个数字,M个操作, 区间L, R. 然后问经过M个操作后落在[L, R]的概率. * ...

  8. HDU 4089 Activation(概率DP)(转)

    11年北京现场赛的题目.概率DP. 公式化简起来比较困难....而且就算结果做出来了,没有考虑特殊情况照样会WA到死的.... 去参加区域赛一定要考虑到各种情况.   像概率dp,公式推出来就很容易写 ...

  9. UVALive 6672 Bonus Cards 概率dp

    题意呢 就是有两种售票方式 一种是icpc 一种是其他方式 icpc抢票成功的概率是其他方式的2倍…… 这时 一个人出现了 他通过内幕知道了两种抢票方式各有多少人 他想知道自己如果用icpc抢票成功的 ...

随机推荐

  1. C语言指针和数组

    #include <stdio.h> int main() { /********************************************* * * 指针和数组: * 定义 ...

  2. iOS录音后播放声音变小的解决方法

    目前需求是录音之后再播放出来.经常会出现播放声音变很小的情况. 解决方法: if (recorder.recording){ [recorder stop]; } [[AVAudioSession s ...

  3. CKEditor与CKFinder学习--自定义界面及按钮事件捕获

    原文地址:CKEditor与CKFinder学习--自定义界面及按钮事件捕获  讨厌CSDN的广告,吃香太难看! 效果图 界面操作图 原始界面 调整后的界面(删除了flush,表单元素等) 该界面的皮 ...

  4. <%#Eval() %>的常用方法

    <%# %>用于数据绑定,通常是用在数据源控件里,比如GridView,Repeater等. 1.绑定Repeater 基础用法 <%# Eval("DriverName& ...

  5. ASP.NET 中 ContentType 类型

    在ASP.NET中使用Response.ContentType="类型名";来确定输出格式 不同的ContentType 会影响客户端所看到的效果.默认的ContentType为 ...

  6. 关于使用AWS的centos

    AWS的centos在版本上有些许不同. 当使用6代的时候,默认的登录用户是root 使用7代的系统,默认的登录用户是centos 否则登录不上去

  7. vue 学习一 组件生命周期

    先上一张vue组件生命周期的流程图 以上就是一个组件完整的生命周期,而在组件处于每个阶段时又会提供一些周期钩子函数以便我们进行一些逻辑操作,而总体来讲 vue的组件共有8个生命周期钩子 beforeC ...

  8. rasa学习(domain.yml、nlu.md、stories.md)(一)

    一. 什么是rasa Rasa是一个用于自动文本和基于语音的对话的开源机器学习框架.了解消息,保持对话以及连接到消息传递通道和API Rasa分为Rasa core和 Rasa nlu两部分: Ras ...

  9. 线程池 一 ForkJoinPool

    java.util.concurrent public class ForkJoinPool extends AbstractExecutorService public abstract class ...

  10. delphi 获取所有窗口标题

    unit Unit1; interface usesWindows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, ...