BP的matlab实现
%2015.04.26 Kang Yongxin ----v 2.0
%完成作业中BP算法,采用批量方式更新权重
%%
%输入数据格式
%x 矩阵 : 样本个数*特征维度
%y 矩阵 :样本个数*类别个数(用01000形式表示)
close all;
clear all;
clc ;
load data.mat;%
x_test=x(1:3:30,:);%从原始数据中留出一部分 作为测试样本
y_test=y(1:3:30,:);
x_train=[x(2:3:30,:);x(3:3:30,:)];%x(1:2:30,:);%[x(11:25,:);x(26:30,:);x(1:10,:)];
y_train=[y(2:3:30,:);y(3:3:30,:)];%%[y(11:25,:);y(26:30,:);y(1:10,:)];
%%
%定义变量名称,初始化网络
d=size(x_train,2);%特征维度,也是输入层节点个数
num_trains=size(x_train,1);%训练样本个数
n_class=size(y_train,2);%样本类别数
node_layer=[d 4 n_class];%每层的节点个数 %[d 3 5 n_class];%构建更多层的网络
num_layer=size(node_layer,2)-1;%网络层数
for i=1:1:num_layer-1
f_name{i}='sigmoid';%对应每层的激活函数
end
f_name{num_layer}='tanh';%'sigmoid';%最后一层的激活函数
eta=0.08;%学习率
theta=10e-4;%终止条件
W=cell(num_layer,1);%初始化权重矩阵,都设曾1,
for i=1:1:num_layer
W{i}=rand(node_layer(i),node_layer(i+1));
end
W_init=W;
%开始循环
item=1;
while item>0 && item<1500
%%
%初始化权值增量
for layer=1:1:num_layer
delta_sum{layer}=zeros(size(W{layer})) ;
end
%%
for k=1:1:num_trains
%对于每个样本的循环
%%%%%%%%%%%%%%%%%%%
%前向计算
x_in=x_train(k,:);
for layer=1:1:num_layer
%对于每一层进行前向计算,并且保存输出值y_out
y_out{layer}=forward(x_in,W{layer},f_name{layer});%批量更新时候W要跟随外层循环
x_in=y_out{layer};
end
%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%
%反向传播,最后一层要单算,因为只有一个输出
delta_out{layer}=y_train(k,:)-y_out{layer};%输出与真值的差
J(k)=0.5*sum(delta_out{layer}.^2);%均方误
delta_error{layer}=delta_out{layer}.*d_function(y_out{layer},f_name{num_layer});%从指向节点收集到的误差
delta_w{layer}=eta*(y_out{layer-1})'*delta_error{layer};%本层的权重变化量
while layer>1
%反向传播误差,保存delta_w
layer=layer-1;
delta_error{layer}=delta_error{layer+1}*(W{layer+1})'.*d_function(y_out{layer},f_name{layer});%从指向节点收集到的误差并使用之前的权重进行加权
if layer~=1
%如果没到第一层,就用layer-1层的输出作为输入
delta_w{layer}=eta*(y_out{layer-1})'*delta_error{layer};%本层的权重变化量
else
%如果是第一层就用本次训练的x作为输入
delta_w{layer}=eta*(x_train(k,:))'*delta_error{layer};%本层的权重变化量
end
end
%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%
%批量更新,要对所有样的贡献进行加和
for layer=1:1:num_layer
delta_sum{layer}=delta_sum{layer}+delta_w{layer} ;
end
end%k个样本对权重 变化量的贡献计算完毕
%% figure(1);
JW(item)=sum(J);
if item>10
Delta_JW=abs(JW(item)-JW(item-1));
if Delta_JW<theta
break;%循环终止条件
end
end
plot(item,JW(item),'.')
hold on;
item=item+1; %更新权重
for layer=1:1:num_layer
%对于每一层更新权重,这个更新放的位置决定是进行批量更新还是每次更新
W{layer}=W{layer}+delta_sum{layer};%批量更新
end
end
%%
%计算准确率
x_in=x_test;
for layer=1:1:num_layer
%对于每一层进行前向计算,并且保存输出值y_out
y_out{layer}=forward(x_in,W{layer},f_name{layer});%批量更新时候W要跟随外层循环
x_in=y_out{layer};
end
[C,I]=max(y_out{layer},[],2);
[C,I_true]=max(y_test,[],2);
Trues=find((I-I_true)==0);
Precision=size(Trues,1)/size(y_test,1)
function [ y ] = forward( x,w,f_name )
%FORWARD 前向计算得到输出值
% 输入 x:输入向量1*m
% w:权重矩阵m*n
% f_name:函数名称(暂时支持'sigmoid''tanh')
% 输出 y:输出向量1*n 公式为 y=f(x*w)
if strcmp(f_name,'sigmoid')
y=sigmoid(x*w);
else if strcmp(f_name,'tanh')
y=tanh(x*w);%matlab 自带
else
disp('wrong function name ');
end
end
end
function [d_f ] = d_function( y,f_name )
%D_FOUNCTION 对相关函数进行求导数
% 输入是该层的输出值y
if strcmp(f_name,'sigmoid')
d_f=y.*(1-y);
else if strcmp(f_name,'tanh')
d_f=1-y.^2;%matlab 自带
else
disp('wrong function name at d_function');
end
end
end
function [ y ] = sigmoid( x )
%MY_SIGMOID
% 输入向量x,输出
y=1./(1+exp(-x));
end
BP的matlab实现的更多相关文章
- 【2008nmj】BP二元分类
在人的大脑里有数以万计的神经元,它们之间通过神经突触来连接.用以判断. BP神经网络 MATLAB实现:
- bp神经网络及matlab实现
本文主要内容包含: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 . 第0节.引例 本文以Fisher的Iris数据集 ...
- BP神经网络(原理及MATLAB实现)
人工神经网络概述: 人工神经元模型: 神经网络的分类: 按照连接方式,可以分为:前向神经网络 vs. 反馈(递归)神经网络: 按照学习方式,可以分为:有导师学习神经网络 vs. 无导师学习神经网络: ...
- Matlab的BP神经网络工具箱及其在函数逼近中的应用
1.神经网络工具箱概述 Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器.线性网络.BP网络.径向基函数网络.竞争型神经网络.自组织网络和学习向量量化网络.反馈 ...
- 详细MATLAB 中BP神经网络算法的实现
MATLAB 中BP神经网络算法的实现 BP神经网络算法提供了一种普遍并且实用的方法从样例中学习值为实数.离散值或者向量的函数,这里就简单介绍一下如何用MATLAB编程实现该算法. 具体步骤 这里 ...
- [matlab]bp神经网络工具箱学习笔记
基本就三个函数: newff():创建一个bp神经网络 train():训练函数 sim():仿真函数 同时具有可视化界面,但目前不知道可视化界面如何进行仿真,且设置不太全 工具箱:Neural ne ...
- MATLAB神经网络(2) BP神经网络的非线性系统建模——非线性函数拟合
2.1 案例背景 在工程应用中经常会遇到一些复杂的非线性系统,这些系统状态方程复杂,难以用数学方法准确建模.在这种情况下,可以建立BP神经网络表达这些非线性系统.该方法把未知系统看成是一个黑箱,首先用 ...
- MATLAB神经网络(1) BP神经网络的数据分类——语音特征信号分类
1.1 案例背景 1.1.1 BP神经网络概述 BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传递,误差反向传播.在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层.每一层的神 ...
- 粒子群优化算法对BP神经网络优化 Matlab实现
1.粒子群优化算法 粒子群算法(particle swarm optimization,PSO)由Kennedy和Eberhart在1995年提出,该算法模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作 ...
随机推荐
- uniapp安卓ios百度人脸识别、活体检测、人脸采集APP原生插件
插件亮点 1 支持安卓平板(横竖屏均可),苹果的iPad.2 颜色图片均可更换. 特别提醒 此插件包含 android 端和 iOS 端,考虑到有些同学只做其中一个端的 app,特意分为 2 个插件, ...
- 力扣90——子集 II
原题 给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: [1,2,2] 输出: [ [2], [1], [1,2,2], ...
- nginx和keeplive实现负载均衡高可用
一. Keeplive服务介绍 Keeplive期初是专门为LVS设计的,专门用来监控LVS集群系统中各个服务节点的状态,后来又加入VRRP的功能,因此除了配合LVS服务以外,也可以作为其他服务(ng ...
- maven parent 与 import 的区别
在 maven 配置文件 pom.xml 中可以 引入 <parent>,方式如下(举例是 spring-boot-starter-parent 中的继承关系) <parent& ...
- 如何查看linux是否打开虚拟化
[服务器虚拟化] 执行命令: cat /proc/cpuinfo |grep vmx 如果有输出,则说明CPU支持虚拟化技术. --------> svm - Secure virtua ...
- nodejs监听服务端口并且代理请求与静态资源
var express = require('express'); const proxy = require('http-proxy-middleware'); const app = expres ...
- 利用Tampermonkey(油猴)+ IDM 实现百度云盘大文件下载(IDM安装教程)
关注微信公众号:“指尖创意” 在菜单干货专区软件目录里领取链接: tampermonkey插件是一个免费的浏览器扩展和最为流行的用户脚本管理器,拥有适用于 Chrome, Microsoft Edge ...
- zabbix监控web应用日志报警并发送消息到钉钉
首先在钉钉上开启钉钉机器人功能 说明:自定义关键词是zabbix发送过来的消息内容必须含有你定义的ERROR或者error字段,否则消息无法发送过来 ip地址段:一般都是zabbix-server的I ...
- Fabric1.4:链码管理与测试
1 链码介绍 智能合约在 Hyperledger Fabric 中称为链码(chaincode),是提供分布式账本的状态处理逻辑.链码被部署在fabric 的网络节点中,能够独立运行在具有安全特性的受 ...
- 测试必备之Java知识(二)—— Java高级的东西
Java高级 类加载过程 加载(创建class对象) -> 连接(验证-准备-解析) -> 类初始化 类加载器类别 根类加载器:加载java核心类 扩展类加载器:加载JRE目录中的jar包 ...