• 引入进程池与线程池

  • 使用ProcessPoolExecutor进程池,使用ThreadPoolExecutor

  • 使用shutdown

  • 使用submit同步调用

  • 使用submit异步调用

  • 异步+回调函数

  • 并发实现套接字通信

引入进程池

在学习线程池之前,我们先看一个例子

 # from multiprocessing import Process
# import time
#
# def task(name):
# print('name',name)
# time.sleep(1)
# if __name__ == '__main__':
# start=time.time()
# p1 = Process(target=task,args=("safly1",))
# p2 = Process(target=task, args=("safly2",))
# p3 = Process(target=task, args=("safly3",))
#
# p1.start()
# p2.start()
# p3.start()
#
# p1.join()
# p2.join()
# p3.join()
#
# print("main")
#
# end = time.time()
# print(end- start)

输出如下:

以上的方式是一个个创建进程,这样的耗费时间才1秒多,虽然高效,但是有什么弊端呢? 
如果并发很大的话,会给服务器带来很大的压力,所以引入了进程池的概念

使用ProcessPoolExecutor进程池

什么时候用池:
池的功能是限制启动的进程数或线程数,
什么时候应该限制???
当并发的任务数远远超过了计算机的承受能力时,即无法一次性开启过多的进程数或线程数时
就应该用池的概念将开启的进程数或线程数限制在计算机可承受的范围内

Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线程池/进程池提供了直接的支持。

通过ProcessPoolExecutor 来做示例。 
我们来看一个最简单的进程池

 from concurrent.futures import ProcessPoolExecutor
import time
def task(name):
print('name',name)
time.sleep(1)
if __name__ == '__main__':
start=time.time()
p1=ProcessPoolExecutor(2)
for i in range(5):
p1.submit(task,i)
p1.shutdown(wait=True)
print('主')
end=time.time()
print(end-start)

输出如下:

 D:\APPS\Python3.7\python.exe "D:/Python/project one/day20180717/进程池与线程池.py"
name 0
name 1
name 2
name 3
name 4

3.118098258972168 Process finished with exit code 0

简单解释下: 
ProcessPoolExecutor(2)创建一个进程池,容量为2,循环submit出5个进程,然后就在线程池队列里面,执行多个进程,p1.shutdown(wait=True)意思是进程都执行完毕,在执行主进程的内容

使用shutdown

p1.shutdown(wait=True)是进程池内部的进程都执行完毕,才会关闭,然后执行后续代码 
如果改成false呢?看如下代码

 from concurrent.futures import ProcessPoolExecutor
import time
def task(name):
print('name',name)
time.sleep(1)
if __name__ == '__main__':
start=time.time()
p1=ProcessPoolExecutor(2)
for i in range(5):
p1.submit(task,i)
p1.shutdown(wait=False)
print('主')
end=time.time()
print(end-start)

输出如下:

 D:\APPS\Python3.7\python.exe "D:/Python/project one/day20180717/进程池与线程池.py"

0.008975744247436523
name 0
name 1
name 2
name 3
name 4 Process finished with exit code 0

使用submit同步调用

同步:提交完任务后就在原地等待,直到任务运行完毕并且拿到返回值后,才运行下一行代码

from concurrent.futures import ProcessPoolExecutor
import time, random, os def piao(name, n):
print('%s is piaoing %s' % (name, os.getpid()))
time.sleep(1)
return n ** 2 if __name__ == '__main__':
p = ProcessPoolExecutor(2)
start = time.time()
for i in range(5):
res=p.submit(piao,'safly %s' %i,i).result() #同步调用
print(res) p.shutdown(wait=True)
print('主', os.getpid()) stop = time.time()
print(stop - start)
 D:\APPS\Python3.7\python.exe "D:/Python/project one/day20180717/进程池与线程池.py"
safly 0 is piaoing 11448
0
safly 1 is piaoing 11800
1
safly 2 is piaoing 11448
4
safly 3 is piaoing 11800
9
safly 4 is piaoing 11448
16
主 8516
5.095325946807861 Process finished with exit code 0

使用submit异步调用

异步:提交完任务(绑定一个回调函数)后不原地等待,直接运行下一行代码,等到任务运行有返回值自动触发回调的函数的运行

 from concurrent.futures import ThreadPoolExecutor
import time
def task(name):
print('name',name)
time.sleep(1)
if __name__ == '__main__':
start=time.time()
p1=ThreadPoolExecutor(2)
for i in range(5):
p1.submit(task,i)
p1.shutdown(wait=True)
print('主')
end=time.time()
print(end-start)

简单小例子

 D:\APPS\Python3.7\python.exe "D:/Python/project one/day20180717/进程池与线程池.py"
name 0
name 1
name 2
name 3
name 4

3.003053903579712

结果

使用回调函数+异步

进程

# from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
# import os
# import time
# import random
#
# def task(n):
# print('%s run...' %os.getpid())
# time.sleep(5)
# return n**2
#
# def parse(future):
# time.sleep(1)
# res=future.result()
# print('%s 处理了 %s' %(os.getpid(),res))
#
# if __name__ == '__main__':
# pool=ProcessPoolExecutor(4)
# # pool.submit(task,1)
# # pool.submit(task,2)
# # pool.submit(task,3)
# # pool.submit(task,4)
#
# start=time.time()
# for i in range(1,5):
# future=pool.submit(task,i)
# future.add_done_callback(parse) # parse会在futrue有返回值时立刻触发,并且将future当作参数传给parse
# pool.shutdown(wait=True)
# stop=time.time()
# print('主',os.getpid(),(stop - start))

 from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
from threading import current_thread
import os
import time
import random def task(n):
print('%s run...' %current_thread().name)
time.sleep(5)
return n**2 def parse(future):
time.sleep(1)
res=future.result()
print('%s 处理了 %s' %(current_thread().name,res)) if __name__ == '__main__':
pool=ThreadPoolExecutor(4)
start=time.time()
for i in range(1,5):
future=pool.submit(task,i)
future.add_done_callback(parse) # parse会在futrue有返回值时立刻触发,并且将future当作参数传给parse
pool.shutdown(wait=True)
stop=time.time()
print('主',current_thread().name,(stop - start))

线程

并发实现套接字通信

 from socket import *
from threading import Thread def talk(conn):
while True:
try:
data=conn.recv(1024)
if len(data) == 0:break
conn.send(data.upper())
except ConnectionResetError:
break
conn.close() def server(ip,port,backlog=5):
server = socket(AF_INET, SOCK_STREAM)
server.bind((ip, port))
server.listen(backlog) print('starting...')
while True:
conn, addr = server.accept() t = Thread(target=talk, args=(conn,))
t.start() if __name__ == '__main__':
server('127.0.0.1',8080)

服务端

 from socket import *
import os client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080)) while True:
msg='%s say hello' %os.getpid()
client.send(msg.encode('utf-8'))
data=client.recv(1024)
print(data.decode('utf-8'))

客户端

扩展:

回调函数(callback)是什么?

以下均来自知乎:

回调函数(callback)是什么? - no.body的回答 - 知乎 https://www.zhihu.com/question/19801131/answer/27459821

非常经典的回答加举例。

Python中的进程池与线程池的更多相关文章

  1. Python中的进程池与线程池(包含代码)

    Python中的进程池与线程池 引入进程池与线程池 使用ProcessPoolExecutor进程池,使用ThreadPoolExecutor 使用shutdown 使用submit同步调用 使用su ...

  2. python中的进程池

    1.进程池的概念 python中,进程池内部会维护一个进程序列.当需要时,程序会去进程池中获取一个进程. 如果进程池序列中没有可供使用的进程,那么程序就会等待,直到进程池中有可用进程为止. 2.进程池 ...

  3. python系列之 - 并发编程(进程池,线程池,协程)

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  4. python并发编程之进程池,线程池,协程

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  5. python并发编程之进程池,线程池concurrent.futures

    进程池与线程池 在刚开始学多进程或多线程时,我们迫不及待地基于多进程或多线程实现并发的套接字通信,然而这种实现方式的致命缺陷是:服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多, 这会对 ...

  6. Python并发编程之进程池与线程池

    一.进程池与线程池 python标准模块concurrent.futures(并发未来) 1.concurrent.futures模块是用来创建并行的任务,提供了更高级别的接口,为了异步执行调用 2. ...

  7. python 36 进程池、线程池

    目录 1. 死锁与递归锁 2. 信号量Semaphor 3. GIL全局解释器锁:(Cpython) 4. IO.计算密集型对比 4.1 计算密集型: 4.2 IO密集型 5. GIL与Lock锁的区 ...

  8. python并发编程之进程池、线程池、协程

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  9. GIL全局解释器锁、死锁现象、python多线程的用处、进程池与线程池理论

    昨日内容回顾 僵尸进程与孤儿进程 # 僵尸进程: 所有的进程在运行结束之后并不会立刻销毁(父进程需要获取该进程的资源) # 孤儿进程: 子进程正常运行 但是产生该子进程的父进程意外死亡 # 守护进程: ...

随机推荐

  1. css3的2D变形

    一.2D变形 1.变形 transform:translate();translateX();translateY();translate(,); 2.过渡 transition:all 1s; 二. ...

  2. python字典的基本操作,以及可变数据类型和不可变数据类型的区分

    字典:采用键值对存储数据的数据类型,字典的键必须是不可变的数据类型 补充: 不可变(可哈希)数据类型:str,bool,int,tuple 可变(不可哈希)数据类型:list,  dict, set ...

  3. Android App的设计架构:MVC,MVP,MVVM与架构AAAAA

    1. 架构设计的目的1.1 通过设计使程序模块化,做到模块内部的高聚合和模块之间的低耦合.1.2 这样做的好处是使得程序在开发的过程中,开发人员只需要专注于一点,提高程序开发的效率,并且更容易进行后续 ...

  4. Android中Activity和AppcompatActivity的区别(详细解析)

    转载 https://blog.csdn.net/today_work/article/details/79300181 继承AppCompatActivity的界面. 如下图所示: copy界面代码 ...

  5. PAT甲级——A1064 Complete Binary Search Tree

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  6. hibernate一对多关系 在一方查询会获得重复数据,重复数量就是多端数据数量用@Fetch(FetchMode.SUBSELECT)解决

    先来看数据表 版块表只有两个数据 板块1是推荐,下边没有子栏目 板块2下边有14个子栏目 在1的一端来查询,发现结果有16条 也就是板块1+版块2+版块2和他的14个子集都列出来了,这明显不对 板块对 ...

  7. Leetcode551.Student Attendance Record I学生出勤记录1

    给定一个字符串来代表一个学生的出勤纪录,这个纪录仅包含以下三个字符: 'A' : Absent,缺勤 'L' : Late,迟到 'P' : Present,到场 如果一个学生的出勤纪录中不超过一个' ...

  8. Go之路之go语言结构

    Go Hello World 实例 package main //定义了包名,必须在源文件中非注释的第一行指名这个文件属于哪个包,每个Go应用程序都包含一个名为main的包 import " ...

  9. apache https 双向认证

    Https分单向认证和双向认证 单向认证表现形式:网站URL链接为https://xxx.com格式 双向认证表现心事:网站URL链接为https://xxx.com格式,并且需要客户端浏览器安装一个 ...

  10. windows 环境下搭建docker私有仓库

    windows 环境下搭建docker私有仓库 1.在公用仓库中pull仓库镜像 docker pull regitry 2.启动仓库镜像 //-d意思是后台运行,-p是做端口映射,这里是将本地的50 ...