N!分解素因子及若干问题【转载】
这里写的非常好http://www.cnblogs.com/openorz/archive/2011/11/14/2248992.html,感谢博主,我这里就直接用了。
将N!表示成
N! = p1^t1*p2^t2*…pi^ti…*pk^tk(其中p1,p2……pk是素数,1<N<= 10^6)
显然很容易通过素数筛选求出pi,因为1<pi<=N,关键是如何快速地求出ti。
我们先来看一下对于2这个素因子,把N!分成两部分,即奇偶两部分
假设N是偶数
N!
=1*2*3*4*5……N
=(2*4*6……) * (1*3*5……)
因为有N/2个偶数,所以偶数部分可以提出N/2个2,
=2^(N/2) * (1*2*3*……N/2) * (1*3*5*……)
=2^(N/2) * (N/2)! * (1*3*5*……)
看到了吗!神奇的事情发生了,N规模的问题转化成了N/2的问题了。上面假设了N是偶数,当然N是奇数时也是一样的,只要规定这里的除法是取整就可以了
于是有递推公式 f(n,2) = f(n/2,2) + n/2,表示n!中2的个数。
用同样的方法可以推出 f(n,p) = f(n/p) + n/p,表示n!中素数p的个数。
于是有代码
int f(int n,int p)
{
if(n==) return ;
return f(n/p) + n/p;
}
将问题推广一下:
问题1:N!的末尾有几个0?
因为 10 = 2*5,所以只要知道N!有多少个2和多少个5,问题就解决了。Min(f(n,2),f(n,5)) 显然f(n,2)>f(n,5),所以问题就转化成了求f(n,5)。
问题2:N!的转化成12进制之后,末尾有几个0?
和问题一样,12=2*2*3,所以只要求Min(f(n,2)/2,f(n,3)),就可以了。
问题3: 求组合数C(n,m)(mod p)
C(n,m)=n!/(m!*(n-m)!) ,只要对分子和分母分别分解素因子,然后因为C(n,m)肯定是整数,所以C(n,m)肯定可以表示成p1^t1*p2^t2*......pi^ti的形式,只要拿分子素因子的幂减去分母对应的素因子的幂即可。好了,后面就简单了,二分快速幂取模......
N!分解素因子及若干问题【转载】的更多相关文章
- FZU OJ 1075 :分解素因子
Problem 1075 分解素因子 Accept: 2161 Submit: 4126Time Limit: 1000 mSec Memory Limit : 32768 KB Pro ...
- fuzhou 1075 分解素因子
Problem 1075 分解素因子 Accept: 1331 Submit: 2523Time Limit: 1000 mSec Memory Limit : 32768 KB Prob ...
- FZU 1075 分解素因子【数论/唯一分解定理/分解素因子裸模板】
[唯一分解定理]:https://www.cnblogs.com/mjtcn/p/6743624.html 假设x是一个正整数,它的值不超过65535(即1<x<=65535),请编写一个 ...
- 给定n,求1/x + 1/y = 1/n (x<=y)的解数~hdu-1299~(分解素因子详解)
链接:https://www.nowcoder.com/acm/contest/90/F来源:牛客网 题目描述 给定n,求1/x + 1/y = 1/n (x<=y)的解数.(x.y.n均为正整 ...
- LightOJ 1340 - Story of Tomisu Ghost 阶乘分解素因子
http://www.lightoj.com/volume_showproblem.php?problem=1340 题意:问n!在b进制下至少有t个后缀零,求最大的b. 思路:很容易想到一个数通过分 ...
- LightOj 1236 - Pairs Forming LCM (分解素因子,LCM )
题目链接:http://lightoj.com/volume_showproblem.php?problem=1236 题意:给你一个数n,求有多少对(i, j)满足 LCM(i, j) = n, ...
- POJ 1811 Prime Test 素性测试 分解素因子
题意: 给你一个数n(n <= 2^54),判断n是不是素数,如果是输出Prime,否则输出n最小的素因子 解题思路: 自然数素性测试可以看看Matrix67的 素数与素性测试 素因子分解利用 ...
- hdu-1299 Diophantus of Alexandria(分解素因子)
思路: 因为x,y必须要大与n,那么将y设为(n+k);那么根据等式可求的x=(n2)/k+n;因为y为整数所以k要整除n*n; 那么符合上面等式的x,y的个数就变为求能被n*n整除的数k的个数,且k ...
- Java hashCode() 和 equals()的若干问题解答<转载自skywang12345>
第1部分 equals() 的作用equals()的作用是用来判断两个对象是否相等.equals()定义在JDK的Object类中.通过判断两个对象的地址是否相等(即,是否是同一个对象)来区分它们是否 ...
随机推荐
- redis学习笔记05-发布订阅模式
由于redis消息队列并不支持多播机制,即生产者产出一次,由中间件复制发送给多个消费者的机制,为了弥补这个不足,单独引入了发布订阅模式的模块.使用方式如下: #生产者 import redis cli ...
- Mac下,spacy配置
pip3 install -U spacy -i http://pypi.douban.com/simple --trusted-host pypi.douban.com python3 -m spa ...
- IOException parsing XML document from ServletContext resource
错误是我们学习的机会,不要错过明白明这个错误原因的机会,那么我们就可以更加深刻得理解这个问题. 在启动springmvc的程序去访问的时候,报IO异常,一般情况下IO异常就是文件找不到. 详细错误如下 ...
- input[type=file]上传图片及转为base64码以及预览
<input type="file" id="imgurl" capture="camera" accept="image/ ...
- 使用Charles在iOS6上进行抓包
抓取Web页面的网络请求很容易,Chrome和Firefox都很容易做到.iOS APP如何抓包呢?其实也很容易,我比较喜欢使用 Charles. 我用的是Mac电脑,首先建立一个热点,然后让iOS设 ...
- C# 基础才是重中之重~对象的生与死
为何要写 之所以写这篇文章,完全是因为学生们在实际开发中遇到的问题,一个对象占用的内存空间总不被释放,导致系统内存不断攀升,其最主要原因是我们对“对象的生与死”不清楚,或者从来没有认真去考虑过这件事, ...
- 获得浏览器User-agent的方法
在浏览器的地址栏输入(不是全部都能用) javascript:alert(navigator.userAgent); 或者网页中 alert(navigator.userAgent) 或者后台中 St ...
- day37 02-Hibernate二级缓存:二级缓存的散装数据
一级缓存存放的是对象的地址.把对象的地址缓存下来了.二级缓存里面存放的是对象的散装数据.你再去获取的时候,因为一级缓存的生命周期结束了,它会从二级缓存中获取.从二级缓存中获取,因为它又会得到一个对象. ...
- Dijkstra,floyd,spfa三种最短路的区别和使用
这里不列举三种算法的实现细节,只是简单描述下思想,分析下异同 一 Dijkstra Dijkstra算法可以解决无负权图的最短路径问题,只能应付单源起点的情况,算法要求两个集合,开始所有点在第二个集合 ...
- 洛谷P1263 宫廷守卫
P1263 宫廷守卫 题目描述 从前有一个王国,这个王国的城堡是一个矩形,被分为M×N个方格.一些方格是墙,而另一些是空地.这个王国的国王在城堡里设了一些陷阱,每个陷阱占据一块空地. 一天,国王决定在 ...