【题解】CTS2019珍珠

题目就是要满足这样一个条件\(c_i\)代表出现次数
\[
\sum {[\dfrac {c_i } 2]} \ge 2m
\]
显然\(\sum c_i=n\)所以,而且假如\(c_i\)是\(2\)的约数就有正常的贡献,如果不是就有少一点的贡献,那么
\[
\sum^D_{i=1} {[2\mid c_i]} > n-2m
\]
设\(f_i\)为钦定有\(i\)种颜色出现偶数次的方案。问题瞬间就变成了HAOI染色...

则有
\[
f_i={D\choose i}[x^n]n!(\dfrac {e^x+e ^{-x}}{2})^i{(e^x)}^{D-i}
\]
选出钦定的\(i\)个颜色,后面是序列的生成方式。
\[
2^if_i={D\choose i}[x^n]n!( {e^x+e ^{-x}})^i{(e^x)}^{D-i}
\]
展开\(^i\)
\[
2^if_i={D\choose i}[x^n]n!\sum_{j=0}^i{i\choose j}{(e^x)}^{D+2j-2i}
\]
由于是求\([x^n]\)所以
\[
2^if_i={D\choose i}n!\sum_{j=0}^i{i\choose j}\dfrac {{(D+2j-2i)}^n}{n!}
\]

\[
={D\choose i}\sum_{j=0}^i{i\choose j} {{(D+2j-2i)}^n}
\]

所以
\[
\dfrac {2^if_i}{{D\choose i}i!}=\sum_{j=0}^i \dfrac {(-(2i-2j-D))^n}{j!(i-j)!}
\]
右边的式子直接NTT得到。

然而我们知道,这样的钦定是有重复的,具体如何重复参考[【题解】HAOI2018]染色(NTT+容斥/二项式反演)。我们直接二项式反演:

设\(g_i\)表示恰好\(i\)种颜色出现次数为偶数的方案,则考虑一下\(g_j\)在\(f_i\)出现的次数
\[
f_i=\sum_{j=i}^D {j\choose i}g_i
\]
直接二项式反演
\[
g_i=\sum_{j=i}^D (-1)^{j-i}{j\choose i}f_j
\]
下标从0没问题,变一下:
\[
g_i=\sum_{j=0}^D (-1)^{j-i}\dfrac {j!}{i!(j-i)!}f_j
\]
整理
\[
\dfrac {g_i}{i!}=\sum_{j=0}^D \dfrac{(-1)^{j-i}\times j!f_j}{(j-i)!}
\]
reverse一下,右边又直接NTT

最终答案:
\[
\sum_{i=n-2m+1}^D g_i
\]
你觉得肯定做不了,\(n\le 1e9\)啊,但是考虑一些边界情况:

  • \(n <2m\)答案为0
  • \(n-2m+1>D\)答案为\(D^n\)

所以如果用多项式算法的条件是
\[
n\ge2m\\n-2m+1\le D=1e5\\
\]
多项式的maxn开\(1<<18\)就行了。

代码真的懒得写就是套套板子调调参。

【题解】CTS2019珍珠(二项式反演+卷积)的更多相关文章

  1. [CTS2019]珍珠——二项式反演

    [CTS2019]珍珠 考虑实际上,统计多少种染色方案,使得出现次数为奇数的颜色数<=n-2*m 其实看起来很像生成函数了 n很大?感觉生成函数会比较整齐,考虑生成函数能否把n放到数值的位置,而 ...

  2. 题解-CTS2019 珍珠

    题面 CTS2019 珍珠 有 \(n\) 个在 \([1,d]\) 内的整数,求使可以拿出 \(2m\) 个整数凑成 \(m\) 个相等的整数对的方案数. 数据范围:\(0\le m\le 10^9 ...

  3. LOJ3120 CTS2019 珍珠 生成函数、二项式反演、NTT

    传送门 题目大意:给出一个长度为\(n\)的序列\(a_i\),序列中每一个数可以取\(1\)到\(D\)中的所有数.问共有多少个序列满足:设\(p_i\)表示第\(i\)个数在序列中出现的次数,\( ...

  4. 【CTS2019】珍珠【生成函数,二项式反演】

    题目链接:洛谷 pb大佬说这是sb题感觉好像有点过fan...(我还是太弱了) 首先,设$i$这个数在序列中出现$a_i$次,要求$\sum_{i=1}^D[a_i \ mod \ 2]\leq n- ...

  5. 洛谷 P5401 - [CTS2019]珍珠(NTT+二项式反演)

    题面传送门 一道多项式的 hot tea 首先考虑将题目的限制翻译成人话,我们记 \(c_i\) 为 \(i\) 的出现次数,那么题目的限制等价于 \(\sum\limits_{i=1}^D\lflo ...

  6. [LOJ3119][CTS2019|CTSC2019]随机立方体:组合数学+二项式反演

    分析 感觉这道题的计数方法好厉害.. 一个直观的思路是,把题目转化为求至少有\(k\)个极大的数的概率. 考虑这样一个事实,如果钦定\((1,1,1),(2,2,2),...,(k,k,k)\)是那\ ...

  7. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  8. LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演

    传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text ...

  9. LOJ3119. 「CTS2019 | CTSC2019」随机立方体 二项式反演

    题目传送门 https://loj.ac/problem/3119 现在 BZOJ 的管理员已经不干活了吗,CTS(C)2019 和 NOI2019 的题目到现在还没与传上去. 果然还是 LOJ 好. ...

随机推荐

  1. @atcoder - CODE FESTIVAL 2017 Final - J@ Tree MST

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定 N 个点,第 i 点有一个点权 Xi,再给定一棵边带权的树 ...

  2. python----操作Memcache、redis、RabbitMQ、SQLAlchemy

    操作本质都是通过socket发送命令 Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次 ...

  3. 红帽Linux6虚拟机克隆后操作

    1.首先需要修改root密码 开机后按2次e进入以下界面 按e编辑 在quiet后输入single 1 输入好了之后,“回车”,返回到了刚刚的界面,再输入“b”,让boot引导进入系统. 进入单用户模 ...

  4. 深度学习的Xavier初始化方法

    在tensorflow中,有一个初始化函数:tf.contrib.layers.variance_scaling_initializer.Tensorflow 官网的介绍为: variance_sca ...

  5. [转][ASP.NET Core 3框架揭秘] 跨平台开发体验: Windows [下篇]

    由于ASP.NET Core框架在本质上就是由服务器和中间件构建的消息处理管道,所以在它上面构建的应用开发框架都是建立在某种类型的中间件上,整个ASP.NET Core MVC开发框架就是建立在用来实 ...

  6. title与h1的区别、b与strong的区别、i与em的区别?

    title与h1的区别 定义: title是网站标题, h1是文章主题 作用: title概括网站信息,可以直接告诉搜索引擎和用户这 个网站是关于什么主题和内容的,是显示在网页Tab栏里的: h1突出 ...

  7. 2019-9-9-dotnet-获取本机-IP-地址方法

    title author date CreateTime categories dotnet 获取本机 IP 地址方法 lindexi 2019-09-09 15:56:33 +0800 2019-0 ...

  8. seo优化:302跳转变为301跳转

    <?php header("Location: http://www.XXX.com",TRUE,301); exit; ?> 要加exit;不加exit;还是会是30 ...

  9. while循环计算1-100和,1-100内偶数/奇数/被整除的数的和

    文章地址 https://www.cnblogs.com/sandraryan/ <!DOCTYPE html> <html lang="en"> < ...

  10. vue-router在新窗口打开页面

    1. <router-link>标签实现新窗口打开: <router-link target="_blank" :to="{path:'/app/dat ...