【题解】CTS2019珍珠

题目就是要满足这样一个条件\(c_i\)代表出现次数
\[
\sum {[\dfrac {c_i } 2]} \ge 2m
\]
显然\(\sum c_i=n\)所以,而且假如\(c_i\)是\(2\)的约数就有正常的贡献,如果不是就有少一点的贡献,那么
\[
\sum^D_{i=1} {[2\mid c_i]} > n-2m
\]
设\(f_i\)为钦定有\(i\)种颜色出现偶数次的方案。问题瞬间就变成了HAOI染色...

则有
\[
f_i={D\choose i}[x^n]n!(\dfrac {e^x+e ^{-x}}{2})^i{(e^x)}^{D-i}
\]
选出钦定的\(i\)个颜色,后面是序列的生成方式。
\[
2^if_i={D\choose i}[x^n]n!( {e^x+e ^{-x}})^i{(e^x)}^{D-i}
\]
展开\(^i\)
\[
2^if_i={D\choose i}[x^n]n!\sum_{j=0}^i{i\choose j}{(e^x)}^{D+2j-2i}
\]
由于是求\([x^n]\)所以
\[
2^if_i={D\choose i}n!\sum_{j=0}^i{i\choose j}\dfrac {{(D+2j-2i)}^n}{n!}
\]

\[
={D\choose i}\sum_{j=0}^i{i\choose j} {{(D+2j-2i)}^n}
\]

所以
\[
\dfrac {2^if_i}{{D\choose i}i!}=\sum_{j=0}^i \dfrac {(-(2i-2j-D))^n}{j!(i-j)!}
\]
右边的式子直接NTT得到。

然而我们知道,这样的钦定是有重复的,具体如何重复参考[【题解】HAOI2018]染色(NTT+容斥/二项式反演)。我们直接二项式反演:

设\(g_i\)表示恰好\(i\)种颜色出现次数为偶数的方案,则考虑一下\(g_j\)在\(f_i\)出现的次数
\[
f_i=\sum_{j=i}^D {j\choose i}g_i
\]
直接二项式反演
\[
g_i=\sum_{j=i}^D (-1)^{j-i}{j\choose i}f_j
\]
下标从0没问题,变一下:
\[
g_i=\sum_{j=0}^D (-1)^{j-i}\dfrac {j!}{i!(j-i)!}f_j
\]
整理
\[
\dfrac {g_i}{i!}=\sum_{j=0}^D \dfrac{(-1)^{j-i}\times j!f_j}{(j-i)!}
\]
reverse一下,右边又直接NTT

最终答案:
\[
\sum_{i=n-2m+1}^D g_i
\]
你觉得肯定做不了,\(n\le 1e9\)啊,但是考虑一些边界情况:

  • \(n <2m\)答案为0
  • \(n-2m+1>D\)答案为\(D^n\)

所以如果用多项式算法的条件是
\[
n\ge2m\\n-2m+1\le D=1e5\\
\]
多项式的maxn开\(1<<18\)就行了。

代码真的懒得写就是套套板子调调参。

【题解】CTS2019珍珠(二项式反演+卷积)的更多相关文章

  1. [CTS2019]珍珠——二项式反演

    [CTS2019]珍珠 考虑实际上,统计多少种染色方案,使得出现次数为奇数的颜色数<=n-2*m 其实看起来很像生成函数了 n很大?感觉生成函数会比较整齐,考虑生成函数能否把n放到数值的位置,而 ...

  2. 题解-CTS2019 珍珠

    题面 CTS2019 珍珠 有 \(n\) 个在 \([1,d]\) 内的整数,求使可以拿出 \(2m\) 个整数凑成 \(m\) 个相等的整数对的方案数. 数据范围:\(0\le m\le 10^9 ...

  3. LOJ3120 CTS2019 珍珠 生成函数、二项式反演、NTT

    传送门 题目大意:给出一个长度为\(n\)的序列\(a_i\),序列中每一个数可以取\(1\)到\(D\)中的所有数.问共有多少个序列满足:设\(p_i\)表示第\(i\)个数在序列中出现的次数,\( ...

  4. 【CTS2019】珍珠【生成函数,二项式反演】

    题目链接:洛谷 pb大佬说这是sb题感觉好像有点过fan...(我还是太弱了) 首先,设$i$这个数在序列中出现$a_i$次,要求$\sum_{i=1}^D[a_i \ mod \ 2]\leq n- ...

  5. 洛谷 P5401 - [CTS2019]珍珠(NTT+二项式反演)

    题面传送门 一道多项式的 hot tea 首先考虑将题目的限制翻译成人话,我们记 \(c_i\) 为 \(i\) 的出现次数,那么题目的限制等价于 \(\sum\limits_{i=1}^D\lflo ...

  6. [LOJ3119][CTS2019|CTSC2019]随机立方体:组合数学+二项式反演

    分析 感觉这道题的计数方法好厉害.. 一个直观的思路是,把题目转化为求至少有\(k\)个极大的数的概率. 考虑这样一个事实,如果钦定\((1,1,1),(2,2,2),...,(k,k,k)\)是那\ ...

  7. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  8. LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演

    传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text ...

  9. LOJ3119. 「CTS2019 | CTSC2019」随机立方体 二项式反演

    题目传送门 https://loj.ac/problem/3119 现在 BZOJ 的管理员已经不干活了吗,CTS(C)2019 和 NOI2019 的题目到现在还没与传上去. 果然还是 LOJ 好. ...

随机推荐

  1. android学习——android项目的的目录结构

       然后我们看一下Helloword的程序目录: 我们可以看到 大致有的文件: 1. MainHelloWorld.java文件 2. R.java文件 3. android.jar文件 4. RE ...

  2. Python--day69--ORM聚合查询和分组查询

    聚合查询和分组查询 聚合 aggregate()是QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典. 键的名称是聚合值的标识符,值是计算出来的聚合值.键的名称是按照字段和聚合 ...

  3. HDU 1026 BSF+优先队列+记录路径、

    #include<iostream> #include<cmath> #include<cstring> #include<cstdio> #inclu ...

  4. 2013-10-7 设置combboxItem高度的方法

    //首先设置一个较大的 ItemHeight 值,比如 20: //然后设置 ComboBox 的 DrawMode 为 OwnerDrawVariable: //再设置DrawItem事件如下 if ...

  5. poj1573

    题意:给出一个矩形,N,E,S,W分别代表进行移动的方向,如果走出矩形网格则输出经过的网格数,如果在矩形网格内循环,则输出没进入循环之前所走过的网格数和循环所经过的网格数: 思路:创建两个数组,一个字 ...

  6. [转]1.2 java web的发展历史

    前言 了解java web的发展历史和相关技术的演进历程,非常有助于加深对java web技术的理解和认识. 阅读目录 1.Servlet的出现 2.Jsp的出现 3.倡导了MVC思想的Servlet ...

  7. P1001 A+B+C Problem

    题目描述 输入三个整数 \(a,b,c\) ,计算它们的和并将结果输出. 输入格式 输入一行,三个整数 \(a,b,c\) ,每个整数之间以一个空格隔开 \((0 \le a,b,c \le 1000 ...

  8. 2019-8-6-在-Gitlab-开启-MatterMost-机器人

    title author date CreateTime categories 在 Gitlab 开启 MatterMost 机器人 lindexi 2019-8-6 19:42:1 +0800 20 ...

  9. 【t091】油滴扩展

    Time Limit: 1 second Memory Limit: 128 MB [问题描述] 在一个长方形框子里,最多有N(0≤N≤6)个相异的点.在其中任何一个点上放一个很小的油滴,那么这个油滴 ...

  10. 关于methods、computed、watch的使用

    关于methods.computed.watch的使用,前前后后我有转载过好几篇别人的文章.但始终没有自己成型的博文来记录,现自己尝试性的总结一下三者之间的区别: computed:计算属性 comp ...