洛谷$P5330\ [SNOI2019]$数论 数论
正解:数论
解题报告:
,,,这题还蛮妙的$QwQ$(,,,其实所有数论题对我来说都挺妙的$kk$然后我真的好呆昂我理解了好久$QAQ$
考虑先建$Q$个点,编号为$[0,Q)$,表示膜$Q$的余数.然后每个点$i$向$(i+P)\ mod Q$连边$QwQ$
显然这个是会成环的,事实上这个环的长度就$\frac{P\cdot Q}{gcd(P,Q)}$(不明白的可以去康那道很古早的考过好几遍了的跑跑步那题?那题不是证了个结论是说.在膜$Q$意义下每次走$P$,只会有$gcd(P,Q)$个环嘛,放到这题里就是有$gcd(P,Q)$个长度为$\frac{P\cdot Q}{gcd(P,Q)}$的环$QwQ$
然后枚举膜$P$的余数$a_i$,显然顺着边跑就等同于$a_i$不变,然后现在就变成,从$a_i$开始在环中跑$\lfloor\frac{T-1-a_i}{P}\rfloor$步,问有多少步是跑到的编号膜$Q\in B$的点上$QwQ$
所以考虑先预处理一个环中的属于$B$的数的数量,然后最后剩下的一点小尾巴特殊算下就欧克
$over$!
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define il inline
#define rg register
#define gc getchar()
#define int long long
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(rg int i=x;i<=y;++i)
#define my(i,x,y) for(rg int i=x;i>=y;--i)
#define ub(i,x) upper_bound(G[i].begin(),G[i].end(),x)-G[i].begin() const int N=1e6+;
int P,Q,n,m,T,d,len,a[N],id[N],as;
bool b[N];
vector<int>G[N]; il int read()
{
rg char ch=gc;rg int x=;rg bool y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
int gcd(ri x,ri y){return y?gcd(y,x%y):x;} signed main()
{
P=read();Q=read();n=read();m=read();T=read()-;rp(i,,n)a[i]=read();rp(i,,m)b[read()]=;d=gcd(P,Q);len=P*Q/d;
rp(i,,d-){ri cnt=,nw=i;while(!cnt || nw!=i){id[nw]=++cnt;if(b[nw])G[i].push_back(cnt);nw=(nw+P)%Q;}}
rp(i,,n)
{
ri num=(T-a[i])/len,to=(T-num*len-a[i])/P;as+=num*(int)(G[a[i]%d].size());
ri l=id[a[i]],r=id[(to*P+a[i])%Q];
if(l<=r){as-=ub(a[i]%d,l-);as+=ub(a[i]%d,r);}
else{swap(l,r);as+=(int)(G[a[i]%d].size());++l;--r;if(l>r)continue;as+=ub(a[i]%d,l-);as-=ub(a[i]%d,r);}
}
printf("%lld\n",as);
return ;
}
洛谷$P5330\ [SNOI2019]$数论 数论的更多相关文章
- 洛谷P4778 Counting swaps 数论
正解:数论 解题报告: 传送门! 首先考虑最终的状态是固定的,所以可以知道初始状态的每个数要去哪个地方,就可以考虑给每个数$a$连一条边,指向一个数$b$,表示$a$最后要移至$b$所在的位置 显然每 ...
- 洛谷P4562 [JXOI2018]游戏 数论
正解:数论 解题报告: 传送门! 首先考虑怎么样的数可能出现在t(i)那个位置上?显然是[l,r]中所有无法被表示出来的数(就约数不在[l,r]内的数嘛QwQ 所以可以先把这些数筛出来 具体怎么筛的话 ...
- 洛谷P1134 阶乘问题[数论]
题目描述 也许你早就知道阶乘的含义,N阶乘是由1到N相乘而产生,如: 12! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 = 479,001, ...
- 洛谷P2398 GCD SUM [数论,欧拉筛]
题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...
- 洛谷P2231 [HNOI2002]跳蚤 [数论,容斥原理]
题目传送门 跳蚤 题目描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+ ...
- 洛谷P1414 又是毕业季 [数论]
题目传送门 又是毕业季 题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在 ...
- 洛谷 - P1403 - 约数研究 - 数论
https://www.luogu.org/problemnew/show/P1403 可以直接用线性筛约数个数求出来,但实际上n以内i的倍数的个数为n/i的下整,要求的其实是 $$\sum\limi ...
- [BZOJ4772]显而易见的数论(数论)
4772: 显而易见的数论 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 76 Solved: 32[Submit][Status][Discuss ...
- 3150luogu洛谷
若说代码 那真的是很水 但是 思想却有点意思 这道题是洛谷博弈论专题的第一道入门题, 然而刚开始我是不会做的, 毕竟是道入门题, 我博弈论还没入门呢. 这道题的做法就是: 如果m为偶数, 那么先手赢( ...
随机推荐
- iPhone:constrainedToSize获取字符串的宽高
在使用UILabel存放字符串时,经常需要获取label的长宽数据,本文列出了部分常用的计算方法. 1.获取宽度,获取字符串不折行单行显示时所需要的长度 CGSize titleSize = [aSt ...
- APICloud原生APP中ajax需要用api.ajax
报错截屏: APICloud原生APP中ajax请求需要用api.ajax(api对象的ajax方法来替代),否则会将引起请求失败. APICloud api.ajax
- vue2——指令渲染,{{}}渲染
博客地址 :https://www.cnblogs.com/sandraryan/ 声明式的渲染,以{{}}的形式调用数据 <!DOCTYPE html> <html lang=&q ...
- caffe 下一些参数的设置
weight_decay防止过拟合的参数,使用方式:1 样本越多,该值越小2 模型参数越多,该值越大一般建议值:weight_decay: 0.0005 lr_mult,decay_mult关于偏置与 ...
- 2012.2.1datagridview用法小结
dgv1.RowHeadersVisible = false; //最左侧栏消失 dgv1.AutoSizeColumnsMode = DataGridViewAutoSizeColumnsMode. ...
- tensorflow入门——3解决问题——4让我们开始吧
深度学习适合解决海量数据和复杂问题 在机器学习中,语音识别,图像识别,语意识别用的是不同的技术,从事相关工作的人合作几乎不可能. 深度学习改变了这一切. 80年代计算机很慢,数据集很小,因此深度学习没 ...
- js面向对象(对象/类/工厂模式/构造函数/公有和原型)
https://www.cnblogs.com/sandraryan/ 什么是对象 js中一切都是对象(有行为和特征).js允许自定义对象,也提供了内建对象(string date math等) 对象 ...
- Python--day69--ORM多对多查询
ManyToManyField class RelatedManager "关联管理器"是在一对多或者多对多的关联上下文中使用的管理器. 它存在于下面两种情况: 外键关系的反向查询 ...
- 五分钟搭建一个基于BERT的NER模型
BERT 简介 BERT是2018年google 提出来的预训练的语言模型,并且它打破很多NLP领域的任务记录,其提出在nlp的领域具有重要意义.预训练的(pre-train)的语言模型通过无监督的学 ...
- 2007年NOIP普及组复赛题解
题目涉及算法: 奖学金:结构体排序: 纪念品分组:贪心: 守望者的逃离:动态规划: Hanoi 双塔问题:递推. 奖学金 题目链接:https://www.luogu.org/problem/P109 ...