UOJ 34: 多项式乘法(FFT模板题)
关于FFT
这个博客的讲解超级棒
http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transform
算法导论上的讲解也不错
模板就是抄一抄别人的啦
首先是递归版本
#include <cstdio>
#include <complex>
#include <cmath>
using namespace std; const double pi = acos(-);
const int N = ( << ) + ;
typedef complex<double> cp;
cp A[N], B[N];
int n, m; void FFT(cp *y, int n, int o) {
if (n == ) return ;
cp l[n >> ], r[n >> ];
for (int i = ; i <= n; i++)
if (i & ) r[i >> ] = y[i];
else l[i >> ] = y[i];
FFT(l, n >> , o); FFT(r, n >> , o);
cp omegan(cos( * pi / n), sin( * pi * o / n)), omega(, );
for (int i = ; i < n >> ; i++) {
y[i] = l[i] + omega * r[i];
y[i + (n >> )] = l[i] - omega * r[i];
omega *= omegan;
}
} int main() {
scanf("%d %d", &n, &m);
for (int i = ; i <= n; i++)
scanf("%lf", &A[i].real());
for (int i = ; i <= m; i++)
scanf("%lf", &B[i].real());
m += n;
for (n = ; n <= m; n <<= );
FFT(A, n, ); FFT(B, n, );
for (int i = ; i <= n; i++)
A[i] *= B[i];
FFT(A, n, -);
for (int i = ; i <= m; i++)
printf("%d ", (int)(A[i].real() / n + 0.5));
return ;
}
迭代版本
#include <cstdio>
#include <cmath>
#include <complex>
#include <iostream>
using namespace std; const int N = << ;
typedef complex<double> cp;
const double pi = acos(-1.0);
cp A[N], B[N];
bool flag;
int a[N], b[N], n, m, tar[N], bit; inline void read(int &ans) {
static char buf = getchar();
ans = ;
for (; !isdigit(buf); buf = getchar());
for (; isdigit(buf); buf = getchar())
ans = ans * + buf - '';
} inline int rev(int val) {
int rst = ;
for (int i = ; i < bit; i++) {
rst <<= ; rst |= val & ; val >>= ;
} return rst;
} inline void FFT(cp *y) {
for (int i = ; i <= bit; i++) {
int fac = << i;
cp omegan(cos( * pi / fac), sin( * pi / fac));
if (flag) omegan.imag() *= -;
for (int j = ; j < n; j += fac) {
cp omega(, );
for (int k = ; k < fac >> ; k++) {
cp t = omega * y[j + k + (fac >> )];
cp u = y[j + k]; y[j + k] = u + t;
y[j + k + (fac >> )] = u - t;
omega *= omegan;
}
}
}
}
int main() {
read(n); read(m); n++; m++;
for (int i = ; i < n; i++) read(a[i]);
for (int i = ; i < m; i++) read(b[i]);
m += n; for (n = ; n < m; n <<= ) bit++;
for (int i = ; i < n; i++) tar[i] = rev(i);
for (int i = ; i < n; i++) A[i].real() = a[tar[i]];
for (int i = ; i < n; i++) B[i].real() = b[tar[i]];
FFT(A); FFT(B);
for (int i = ; i < n; i++) A[i] *= B[i];
for (int i = ; i < n; i++) if (i < tar[i]) swap(A[i], A[tar[i]]);
flag = true; FFT(A);
for (int i = ; i < m - ; i++)
printf("%.0lf ", 0.0001 + A[i].real() / n);
puts("");
return ;
}
UOJ 34: 多项式乘法(FFT模板题)的更多相关文章
- UOJ 34 多项式乘法 FFT 模板
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- ●UOJ 34 多项式乘法
题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...
- 【刷题】UOJ #34 多项式乘法
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...
- UOJ#34. 多项式乘法(NTT)
这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...
- 2018.11.14 uoj#34. 多项式乘法(fft)
传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...
- UOJ 34 多项式乘法 ——NTT
[题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...
- 2018.11.14 uoj#34. 多项式乘法(ntt)
传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...
- [UOJ 0034] 多项式乘法
#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...
随机推荐
- HTML/JavaScript实现地图以鼠标为圆心缩放和移动
代码如下 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...
- [POI2008] PLA-Postering - 单调栈
给你 \(n\) 个相连的矩形建筑,让你用最少海报把他们覆盖掉,海报不能重叠,也不可以高出被覆盖的矩形. Solution 考虑维护一个单调递增的栈,每次插入时弹掉所有比自己高的,如果自己和末端一样高 ...
- 一个简单的java web项目 仅实现添加
连接数据库已经进行判断 要求: 1登录账号:要求由6到12位字母.数字.下划线组成,只有字母可以开头:(1分) 2登录密码:要求显示“• ”或“*”表示输入位数,密码要求八位以上字母.数字组成.(1分 ...
- vim编辑器-删除命令
dd:删除游标所在的一整行(常用) ndd:n为数字.删除光标所在的向下n行,例如20dd则是删除光标所在的向下20行 d1G:删除光标所在到第一行的所有数据 dG:删除光标所在到最后一行 ...
- js中变量含(参数、数组)作用域传递问题
js没有块级作用域(你可以自己闭包或其他方法实现),只有函数级作用域和全局作用域,函数外面的变量函数里面可以找到使用,函数里面的变量外面无法访问到. 写这个是因为ES6中的一个例子开始的.首先看下例子 ...
- [CF1304F] Animal Observation - dp,单调队列
设 \(f[i][j]\) 为第 \(i\) 天在第 \(j\) 个位置放置的最大值,设 \(s[i][j]\) 是第 \(i\) 行的前缀和,则 \[ \begin{align} f[i][j] & ...
- windows ltsc版本没有Microsoft Store怎么解决
[背景]以前一直都是使用windows的企业版,后来发现ltsc版本更好,这个好处在这里就不多说,懂的人自然会懂.但是发现很多应用都没有,包括Microsoft Store商店都没有.下面就是解决 ...
- python求极值点(波峰波谷)
python求极值点主要用到scipy库. 1. 首先可先选择一个函数或者拟合一个函数,这里选择拟合数据:np.polyfit import pandas as pd import matplotli ...
- eclipse下载更新可用的SDK 2018-11-12
懒人方法: mirrors.neusoft.edu.cn:80 操作步骤: 1. Android SDK Manager----Tools----Options-----Http Proxy Serv ...
- Unable to load authentication plugin 'caching_sha2_password'
Caused by: com.mysql.cj.core.exceptions.WrongArgumentException: Unable to load authentication plugin ...