http://blog.csdn.net/pipisorry/article/details/52247379

基础知识参考:

[均值、方差与协方差矩阵]

[矩阵论:向量范数和矩阵范数]

数据的标准化(normalization)和归一化

数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上。

目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法、标准差法)、折线型方法(如三折线法)、曲线型方法(如半正态性分布)。不同的标准化方法,对系统的评价结果会产生不同的影响,然而不幸的是,在数据标准化方法的选择上,还没有通用的法则可以遵循。

归一化的目标

1 把数变为(0,1)之间的小数
        主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。
2 把有量纲表达式变为无量纲表达式
        归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。 比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。
另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。

归一化后有两个好处

1. 提升模型的收敛速度

如下图,x1的取值为0-2000,而x2的取值为1-5,假如只有这两个特征,对其进行优化时,会得到一个窄长的椭圆形,导致在梯度下降时,梯度的方向为垂直等高线的方向而走之字形路线,这样会使迭代很慢,相比之下,右图的迭代就会很快


2.提升模型的精度

归一化的另一好处是提高精度,这在涉及到一些距离计算的算法时效果显著,比如算法要计算欧氏距离,上图中x2的取值范围比较小,涉及到距离计算时其对结果的影响远比x1带来的小,所以这就会造成精度的损失。所以归一化很有必要,他可以让各个特征对结果做出的贡献相同。

在多指标评价体系中,由于各评价指标的性质不同,通常具有不同的量纲和数量级。当各指标间的水平相差很大时,如果直接用原始指标值进行分析,就会突出数值较高的指标在综合分析中的作用,相对削弱数值水平较低指标的作用。因此,为了保证结果的可靠性,需要对原始指标数据进行标准化处理。

在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。数据标准化的方法有很多种,常用的有“最小—最大标准化”、“Z-score标准化”和“按小数定标标准化”等。经过上述标准化处理,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。

从经验上说,归一化是让不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。

机器学习算法数据的归一化

有些模型在各个维度进行不均匀伸缩后,最优解与原来不等价,例如SVM。对于这样的模型,除非本来各维数据的分布范围就比较接近,否则必须进行标准化,以免模型参数被分布范围较大或较小的数据dominate。
有些模型在各个维度进行不均匀伸缩后,最优解与原来等价,例如logistic regression。对于这样的模型,是否标准化理论上不会改变最优解。但是,由于实际求解往往使用迭代算法,如果目标函数的形状太“扁”,迭代算法可能收敛得很慢甚至不收敛。所以对于具有伸缩不变性的模型,最好也进行数据标准化。

[线性回归与特征归一化(feature scaling)]

皮皮blog

常见的数据归一化方法

min-max标准化(Min-max normalization)

也叫离差标准化,是对原始数据的线性变换。

使结果落到[0,1]区间,转换函数如下:

其中max为样本数据的最大值,min为样本数据的最小值。

def Normalization(x):
    return [(float(i)-min(x))/float(max(x)-min(x)) for i in x]

如果想要将数据映射到[-1,1],则将公式换成:

数据标准化/归一化normalization的更多相关文章

  1. 转:数据标准化/归一化normalization

    转自:数据标准化/归一化normalization 这里主要讲连续型特征归一化的常用方法.离散参考[数据预处理:独热编码(One-Hot Encoding)]. 基础知识参考: [均值.方差与协方差矩 ...

  2. NumPy数据的归一化

    数据的归一化 首先我们来看看归一化的概念: 数据的标准化(normalization)和归一化 数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.在某些比较和评价 ...

  3. 数据标准化 Normalization

    数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能 ...

  4. Python数据预处理—归一化,标准化,正则化

    关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的 ...

  5. Batch Normalization的算法本质是在网络每一层的输入前增加一层BN层(也即归一化层),对数据进行归一化处理,然后再进入网络下一层,但是BN并不是简单的对数据进行求归一化,而是引入了两个参数λ和β去进行数据重构

    Batch Normalization Batch Normalization是深度学习领域在2015年非常热门的一个算法,许多网络应用该方法进行训练,并且取得了非常好的效果. 众所周知,深度学习是应 ...

  6. 数据预处理 | 使用 Pandas 进行数值型数据的 标准化 归一化 离散化 二值化

    1 标准化 & 归一化 导包和数据 import numpy as np from sklearn import preprocessing data = np.loadtxt('data.t ...

  7. 数据标准化方法及其Python代码实现

    数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法.标准差法).折线型方法(如三折线法).曲线型方法 ...

  8. pandas学习(四)--数据的归一化

    欢迎加入python学习交流群 667279387 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据 ...

  9. R实战 第九篇:数据标准化

    数据标准化处理是数据分析的一项基础工作,不同评价指标往往具有不同的量纲,数据之间的差别可能很大,不进行处理会影响到数据分析的结果.为了消除指标之间的量纲和取值范围差异对数据分析结果的影响,需要对数据进 ...

随机推荐

  1. python打造一个Mysql数字类型注入脚本(1)

    前言: 总是想写一个sql注入脚本,但是之前的那些都不行. 这次做好了准备,然后嘿嘿嘿. 准备: sql注入的基础知识 熟悉怎么判断 正文: 思路概念图: 这里我没有限制用户输入,不限制的话可能会 @ ...

  2. [SDOI2011]计算器

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  3. NOI2006 郁闷的出纳员

    题目描述 OIER公司是一家大型专业化软件公司,有着数以万计的员工.作为一名出纳员,我的任务之一便是统计每位员工的工资.这本来是一份不错的工作,但是令人郁闷的是,我们的老板反复无常,经常调整员工的工资 ...

  4. HDU3311Dig The Wells

    给定N个寺庙,和M个另外的地方. 然后给定点权,表示在这个点挖水井需要的代价. 再给定边权,为建造无向边i,j的代价. 然后求怎样弄最小的代价使得前N个点,就是寺庙都能从挖的井里得到水. 输入输出格式 ...

  5. ●BZOJ 2820 YY的GCD

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题解: 莫比乌斯反演 先看看这个题:HDU 1695 GCD(本题简化版) HDU 1 ...

  6. FZU 2157 树形DP

    最开始一直不理解题是什么意思 ╯▽╰ 题意:给出n个点,每个点都有两种花费,一个是0种花费,一个是1种花费,每两个点相连,边也有花费,是随着点所取话费的种类不同,边的花费也不同,边有四种花费,00,0 ...

  7. [BZOJ]1045 圆上的整点(HAOI2008)

    数学题第二弹! Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 一个正整数r. Output 整点个数. Sample Input 4 ...

  8. 网络硬盘NFS

    NFS是网络文件系统,用于计算机间共享文件系统,由sun公司1985年推出的协议,现在已经被广泛使用.一般来说,所有的linux发型版都支持NFS.nfs是一个服务器,客户端的架构,建立一个nfs的服 ...

  9. Python中编码的详细讲解

    看这篇文章前,你应该已经知道了为什么有编码,以及编码的种类情况 ASCII 占1个字节,只支持英文 GB2312 占2个字节,支持6700+汉字 GBK GB2312的升级版,支持21000+汉字 S ...

  10. C#中Fun简单介绍及运用到项目中与缓存(本地缓存,Redis)结合使用

     1.简单介绍Fun C#中Fun和Action有点类似,都是一个委托方法,不同的是Func是有返回值的,而Action没有. (T)此委托封装的方法的参数类型. 备注:详情了解Fun到(https: ...