1233: [Usaco2009Open]干草堆tower

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 983  Solved: 464
[Submit][Status][Discuss]

Description

奶牛们讨厌黑暗。 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 。一共有N大包的干草(1<=N<=100000)(从1到N编号)依靠传送带连续的传输进牛棚来。第i包干草有一个 宽度W_i(1<=w_i<=10000)。所有的干草包的厚度和高度都为1. Bessie必须利用所有N包干草来建立起干草堆,并且按照他们进牛棚的顺序摆放。她可以相放多少包就放 多少包来建立起tower的地基(当然是紧紧的放在一行中)。接下来他可以放置下一个草包放在之前一级 的上方来建立新的一级。注意:每一级不能比下面的一级宽。她持续的这么放置,直到所有的草包都被安 置完成。她必须按顺序堆放,按照草包进入牛棚的顺序。说得更清楚一些:一旦她将一个草包放在第二级 ,她不能将接下来的草包放在地基上。 Bessie的目标是建立起最高的草包堆。

Input

第1行:一个单一的整数N。 第2~N+1行:一个单一的整数:W_i。

Output

第一行:一个单一的整数,表示Bessie可以建立的草包堆的最高高度。

Sample Input

3
1
2
3

Sample Output

2
输出说明:
前两个(宽度为1和2的)放在底层,总宽度为3,在第二层放置宽度为3的。
+----------+
| 3 |
+---+------+
| 1 | 2 |
+---+------+

HINT

 

Source

很扯淡的一道题目。
可以看出这道题最后形成的图形应该是金字塔形的,而对于材料相同金字塔来说 底部越窄形成的高度越高
这个通过感性的方式理解应该是显然的,但是又感觉有点玄乎,感觉这篇博客的证明很有道理
http://blog.csdn.net/u010336344/article/details/52821271

所以得到一个结论,对于同一层来说 这一层越窄方案就越优
由于上面的必须不宽于下面,考虑倒着dp
f[i]=sum[i]-sum[j] 满足sum[i]-sum[j]>=f[j]即sum[i]>=sum[j]+f[j]
要让f[i]最小必须让j尽量大并且j满足条件
可以发现,sum[i]>=sum[j]+f[j]中sum[i]是不变的,那么后面的部分越小越可以满足
故 若有 k<j && sum[k]+f[k]>=sum[j]+f[j] k是肯定不会被转移的
因此可以维护一个单调递增的队列来转移dp
dp时记录g[i]来表示搭到第i个最高搭的层数

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define N 100005
using namespace std;
int n,a[N],sum[N],q[N],f[N],g[N];
int main(){
scanf("%d",&n);
for(int i=n;i;i--)scanf("%d",&a[i]);
for(int i=;i<=n;i++)sum[i]=sum[i-]+a[i];
int l=,r=;
for(int i=;i<=n;i++){
while(l<r&&sum[i]>=sum[q[l+]]+f[q[l+]])l++;//满足条件的情况下j越大 f[i]越小
int j=q[l];g[i]=g[j]+;f[i]=sum[i]-sum[j];
while(l<r&&sum[q[r]]+f[q[r]]>=sum[i]+f[i])r--;
q[++r]=i;
}
printf("%d\n",g[n]);return ;
}

bzoj1233[Usaco2009Open]干草堆tower 单调队列优化dp的更多相关文章

  1. BZOJ1233 [Usaco2009Open]干草堆tower 【单调队列优化dp】

    题目链接 BZOJ1233 题解 有一个贪心策略:同样的干草集合,底长小的一定不比底长大的矮 设\(f[i]\)表示\(i...N\)形成的干草堆的最小底长,同时用\(g[i]\)记录此时的高度 那么 ...

  2. bzoj1233 [Usaco2009Open]干草堆tower 【单调队列dp】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1233 单调队列优化的第一题,搞了好久啊,跟一开始入手斜率优化时感觉差不多... 这一题想通了 ...

  3. BZOJ1233 [Usaco2009Open]干草堆tower[贪心+单调队列优化]

    地址 注意思路!多看几遍! 很巧妙的一道题.不再是决策点以dp值中一部分含j项为维护对象,而是通过维护条件来获取决策. 首先有个贪心策略,让底层的宽度尽可能小,才能让高度尽可能高.所以应该倒着dp,表 ...

  4. bzoj1233: [Usaco2009Open]干草堆tower

    Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的干草(1<=N<=100000)(从1到N编号) ...

  5. BZOJ1233 [Usaco2009Open]干草堆tower 和 BZOJ3549 [ONTAK2010]Tower

    题意 Problem 3549. -- [ONTAK2010]Tower 3549: [ONTAK2010]Tower Time Limit: 10 Sec  Memory Limit: 64 MBS ...

  6. 【BZOJ 1233】 [Usaco2009Open]干草堆tower (单调队列优化DP)

    1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...

  7. bzoj 1233: [Usaco2009Open]干草堆tower

    1233: [Usaco2009Open]干草堆tower Description 奶牛们讨厌黑暗. 为了调整牛棚顶的电灯的亮度,Bessie必须建一座干草堆使得她能够爬上去够到灯泡 .一共有N大包的 ...

  8. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  9. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

随机推荐

  1. python 异步协程

    """A very simple co-routine scheduler. Note: this is written to favour simple code ov ...

  2. 视频聊天 Demo

    ESFramework Demo -- 入门Demo,简单的即时通讯系统(附源码) 是基于ESFramework实现的一个简单的文字聊天demo,现在,我们将在这个demo的基础上,使用OMCS为其增 ...

  3. Scala 集合入门

    1. 数组 1.1 定长数组 scala.Array 是定长的可变的索引型集合, JVM 中, Scala 的 Array 是以 Java 数组方式实现. String 对应 java.lang.St ...

  4. Hyper-V虚拟机故障导致数据文件丢失的数据恢复全过程

    简介: 由于MD3200存储中虚拟机的数据文件丢失,导致整个Hyper-V服务瘫痪,虚拟机无法使用,故障环境为Windows Server 2012服务器,系统中部署了Hyper-V虚拟机环境,虚拟机 ...

  5. H5新特性之webWorker

    众所周知javascript是单线程语言,这就是js开发难度较低的原因了,因为不需要解决多线程的资源共享问题(例如死锁),但是单线程性能并不好,因此多了一个webWorker实现js的多进程来提升js ...

  6. c语言中宏定义和常量定义的区别

    他们有共同的好处就是"一改全改,避免输入错误"哪两者有不同之处吗?有的. 主要区别就在于,宏定义是在编译之前进行的,而const是在编译阶段处理的 宏定义不占用内存单元而const ...

  7. 关于PHP7

    目前一直使用php7也看了许多文档视频等,整理一下相关细节(仅为记录-),对于PHP7性能,如下图所示. * 在wordpress3.0.1中 php7比php5.6性能提升约3倍左右 新特性 一.变 ...

  8. maven构建spring报错org.springframework.core.NestedRuntimeException cannot be resolved.

    Error:The type org.springframework.core.NestedRuntimeException cannot be resolved. It is indirectly ...

  9. 阿里云API网关(17)签名算法

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  10. jquery中attr与prop的区别

    先从一个老生常谈的问题说起,使用jquery实现全选全不选.楼主先使用的jquery版本是 jquery-1.11.1.min.js 全选<input type="checkbox&q ...