数学题第二弹!

Description

  求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。

Input

  一个正整数r。

Output

  整点个数。

Sample Input

  4

Sample Output

  4

HINT

  r<=2000 000 000

Solution

  小C不想写题解啊啊啊啊!!!!

  题解在这里啊啊啊啊!!!!(看完记得投币!!!!)

  我爱数学啊啊啊啊!!!!

  开玩笑的,还是说一说题解吧。

  相信如果你认真看完了上面那个视频的前25min,心里肯定已经有不下一万种解法了。

  小C先口胡两句,你们意会就好。

    题目要我们求的是以原点为圆心,半径为的圆经过了多少个整点。

    所以我们只要把的所有因数的函数值相加的和乘上4就是答案。

  请完全无视上面两行!完全无视!现在说正经的:

  根据我们的知识储备,我们知道,对于圆

  将a进行质因数分解,得

  如果存在i使得为奇数,那么该圆不经过任何整点。

  否则答案就是

  根据上面的结论,由于题目中的a是完全平方数,所以不存在di为奇数的情况,因此必定经过整点。

  所以我们只要把r质因数分解,挑出其中形如4k+1的质数,该质数的指数为d,对答案的贡献就是乘上2*d+1。

  时间复杂度是质因数分解的

#include <cstdio>
#include <algorithm>
#include <cstring>
#define MN 60005
using namespace std;
int n,ans,pin,pri[MN];
bool u[MN]; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} int main()
{
register int i,j,lt;
n=read(); ans=;
for (i=;1LL*i*i<=n;++i)
{
if (!u[i]) pri[++pin]=i;
for (j=;1LL*i*i*pri[j]*pri[j]<=n;++j)
{
u[i*pri[j]]=true;
if (i%pri[j]==) break;
}
}
while (n%pri[]==) n/=pri[];
for (i=;i<=pin;++i)
{
for (lt=;n%pri[i]==;++lt) n/=pri[i];
if (pri[i]%==) ans*=lt<<|;
}
if (n!=&&n%==) ans*=;
printf("%d",ans<<);
}

Last Word

  我在B站学数学.jpg

  开什么玩笑!B站本来就是优秀的在线学习网站!(小C口胡不下去了)

[BZOJ]1045 圆上的整点(HAOI2008)的更多相关文章

  1. BZOJ 1041 圆上的整点

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1041 题意:求圆x^2+y^2=r^2上的整点. 思路:由于对称性,我们只需要计算第一象 ...

  2. BZOJ 1041 圆上的整点 数学

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1041 题目大意:求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整 ...

  3. bzoj 1041 圆上的整点 分类: Brush Mode 2014-11-11 20:15 80人阅读 评论(0) 收藏

    这里先只考虑x,y都大于0的情况 如果x^2+y^2=r^2,则(r-x)(r+x)=y*y 令d=gcd(r-x,r+x),r-x=d*u^2,r+x=d*v^2,显然有gcd(u,v)=1且u&l ...

  4. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  5. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  6. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

  7. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

  8. bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点

    http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 ...

  9. BZOJ(2) 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4966  Solved: 2258[Submit][Sta ...

随机推荐

  1. 使用 VSCode 编写 .NET Core 项目之初体验

    注:本文在根据 微软官方文档指导下,根据自己的学习中整理,并不完全照搬文档,但也大体和文档学习路线相似,主要为记录学习过程. 官方学习地址: https://code.visualstudio.com ...

  2. JAVA_SE基础——62.String类的构造方法

    下面我先列出初学者目前用到的构造方法 String 的构造方法:     String()  创建一个空内容 的字符串对象.   String(byte[] bytes)  使用一个字节数组构建一个字 ...

  3. JAVA_SE基础——60.初识Object

    java是面向对象的语言,核心思想:找适合 的对象做适合 的事情:方式一:自定义类,然后通过自定义的类创建对象.方式二:sun提供了很多的类给我使用,我们只需要认识这些类,我们就可以通过这些类创建对象 ...

  4. kali rolling更新源之gpg和dirmngr问题

    1.编辑 /etc/apt/source.list gedit /etc/apt/sources.list 输入更新源,可以选任何可用更新源,这里设置官方源 deb http://http.kali. ...

  5. Python内置函数(18)——bin

    英文文档: bin(x) Convert an integer number to a binary string. The result is a valid Python expression. ...

  6. 原生JS封装时间运动函数

    /*讲时间运动之前先给大家复习一下运动函数 通常大家都会写运动框架,一个定时器(Timer),一个步长(step 就是每次运动的距离),一个当前位置(current)一个目标位置(target),然后 ...

  7. CentOS7.4下的 JDK1.8 安装

    一.卸载老的JDK 如果需要卸载OpenJDK,执行以下操作: [root@localhost ~]# rpm -e --nodeps tzdata-java-2014i-1.el7.noarch[r ...

  8. 九、Python+Selenium模拟用QQ登陆腾讯课堂,并提取报名课程(练习)

    研究QQ登录规则的话,得分析大量Javascript的加密解密,比较耗时间.自己也是练习很少,短时间成功不了.所以走了个捷径. Selenium是一个WEB自动化测试工具,它运行时会直接实例化出一个浏 ...

  9. Java 高级开发必修知识---反射

    Class类的使用 1) 在面向对象的世界里,万事万物皆对象 A. Java语言中,普通数据类型,静态成员不是对象,其他皆对象 B. 每一个类也是对象 C. 类是java.lang.Class类的实例 ...

  10. 在删除一个指针之后,一定将该指针设置成空指针(即在delete *p之后一定要加上: p=NULL)

    在删除一个指针之后,一定将该指针设置成空指针(即在delete *p之后一定要加上: p=NULL)