BZOJ_2809_[Apio2012]dispatching_可并堆
BZOJ_2809_[Apio2012]dispatching_可并堆
Description
Input
Output
Sample Input
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1
Sample Output
HINT
如果我们选择编号为 1的忍者作为管理者并且派遣第三个和第四个忍者,薪水总和为 4,没有超过总预算
4。因为派遣了 2 个忍者并且管理者的领导力为 3,
用户的满意度为 2 ,是可以得到的用户满意度的最大值。
题目可以简化成这样:
给出一棵 $n$ 个点以 $1$ 为根的有根树,每个点有代价 $ci$ 和价值 $Li$ 。对于某个点,从它子树中选出代价和不超过 $m$ 的一些点,可以获得 点数×当前点的价值 的收益。求最大收益。
对于以每个点为根的子树,一定是优先选代价小的,并且尽可能的多选。
每个节点维护一个可并堆(大根),从下至上合并,每次当总和大于$m$ 时弹出堆顶元素。
为了方便每个点记录一下堆顶(左偏树的根)$root[x]$ 。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 100050
typedef long long ll;
int n,m,head[N],to[N<<1],nxt[N<<1],val[N],cnt,ls[N],rs[N],dis[N],siz[N];
int rt,c[N],l[N],root[N];
ll sum[N],ans;
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
int merge(int x,int y) {
if(!x) return y;
if(!y) return x;
if(c[x]<c[y]) swap(x,y);
rs[x]=merge(rs[x],y);
if(dis[ls[x]]<dis[rs[x]]) swap(ls[x],rs[x]);
dis[x]=dis[rs[x]]+1;
return x;
}
void dfs(int x) {
int i;
root[x]=x; sum[x]=c[x]; siz[x]=1;
for(i=head[x];i;i=nxt[i]) {
dfs(to[i]);
sum[x]+=sum[to[i]],siz[x]+=siz[to[i]],root[x]=merge(root[x],root[to[i]]);
}
while(sum[x]>m) {
sum[x]-=c[root[x]]; siz[x]--; root[x]=merge(ls[root[x]],rs[root[x]]);
}
ans=max(ans,1ll*l[x]*siz[x]);
}
int main() {
dis[0]=-1;
int i,x;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++) {
scanf("%d%d%d",&x,&c[i],&l[i]);
if(!x) rt=i;
else add(x,i);
}
dfs(rt);
printf("%lld\n",ans);
}
BZOJ_2809_[Apio2012]dispatching_可并堆的更多相关文章
- 【BZOJ2809】[Apio2012]dispatching 可并堆
[BZOJ2809][Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 M ...
- BZOJ2809 [Apio2012]dispatching 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2809 题意概括 n个点组成一棵树,每个点都有一个领导力和费用,可以让一个点当领导,然后在这个点的子 ...
- bzoj 2809: [Apio2012]dispatching -- 可并堆
2809: [Apio2012]dispatching Time Limit: 10 Sec Memory Limit: 128 MB Description 在一个忍者的帮派里,一些忍者们被选中派 ...
- BZOJ 2809 [Apio2012]dispatching(斜堆+树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2809 [题目大意] 给出一棵树,求出每个点有个权值,和一个乘算值,请选取一棵子树, 并 ...
- [APIO2012]派遣 可并堆(左偏树)
没啥说的,自底向上合并大根堆即可. 一边合并,一边贪心弹堆顶直到堆的总和不大于预算. Code: #include <cstdio> #include <algorithm> ...
- [APIO2012]派遣 可并堆
Background 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿. Description 在这个帮派里,有一名忍者被称之为Master.除了Master以外,每名忍者 ...
- 2809: [Apio2012]dispatching 可并堆 左偏树
https://www.lydsy.com/JudgeOnline/problem.php?id=2809 板子题wa了一下因为输出ans没有lld #include<iostream> ...
- 浅谈左偏树在OI中的应用
Preface 可并堆,一个听起来很NB的数据结构,实际上比一般的堆就多了一个合并的操作. 考虑一般的堆合并时,当我们合并时只能暴力把一个堆里的元素一个一个插入另一个堆里,这样复杂度将达到\(\log ...
- 数据结构,可并堆(左偏树):COGS [APIO2012] 派遣
796. [APIO2012] 派遣 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿. 在这个帮派里,有一名忍者被称之为Master.除了Master以外,每名忍者都有且 ...
随机推荐
- Python的lambda
if else 可以用简单的三元运算符表示 if 1 == 1: name = 'wupeiqi' else: name = 'alex' --> name = 'wupeiqi' if 1 = ...
- miniUI input设置默认值,js获取年月注意事项,数据库nvl函数使用
2017-6-5周一,今天碰到的一个需求是:两税附征模块进入页面筛选时间默认值为当前月的上一个月,并根据筛选结果显示数据,我们用的框架为miniUI. 坑1: 默认值设置,刚刚接触miniUI,对里面 ...
- 深入浅出Java concurrent
看 :http://www.blogjava.net/xylz/archive/2010/07/08/325587.html
- Java——接口
被interface修饰的类,叫接口接口里的方法都是抽象的,不能实现.用implements关键字可以让一个类来实现该接口.接口:一个类在继承另一个类的同时.还可以实现多个接口.接口的出现避免了单继承 ...
- Web运营手记
1.图片是给活人用户看的,相对来讲,文字是给搜索引擎看的.精华内容争取要在网站或者频道主页里面让人看到. 2.搜索引擎喜欢看的几种文字:页面标题.关键词元信息(只有Bing管点用).描述(descri ...
- springboot中使用分页,文件上传,jquery的具体步骤(持续更新)
分页: pom.xml 加依赖 <dependency> <groupId>com.github.pagehelper</groupId> <arti ...
- Java核心卷笔记(一)
第三章Java基程序设计结构 1.注释 三种注释方式: // 注释单行 /* 内容 */ 注释单行 /** * 内容 */ 2. java 数据类型 Java数据类型可分为两种:基本数据类型和引用数据 ...
- 【转】Javascript全局变量var与不var的区别
相信你对全局变量一定不陌生,在函数作用域里用a=1这种形式定义的变量会是一个全局变量,在全局作用域里,用下面3种形式都可以创建对全局可见的命名: <script> var a = 1; b ...
- gawk编程语言
gawk是一门功能丰富的编程语言,你可以通过它所提供的各种特性来编写好几程序处理数据. 22.1 使用变量 gawk编程语言支持两种不同类型的变量: 内建变量和自定义变量 22.1.1 内建变量 ga ...
- 15.linux基础
1.目录 /:根目录,一般根目录下只存放目录,在Linux下有且只有一个根目录.所有的东西都是从这里开始.当你在终端里输入“/home”,你其实是在告诉电脑,先从/(根目录)开始,再进入到home目录 ...