BZOJ_2809_[Apio2012]dispatching_可并堆
BZOJ_2809_[Apio2012]dispatching_可并堆
Description
Input
Output
Sample Input
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1
Sample Output
HINT
如果我们选择编号为 1的忍者作为管理者并且派遣第三个和第四个忍者,薪水总和为 4,没有超过总预算
4。因为派遣了 2 个忍者并且管理者的领导力为 3,
用户的满意度为 2 ,是可以得到的用户满意度的最大值。
题目可以简化成这样:
给出一棵 $n$ 个点以 $1$ 为根的有根树,每个点有代价 $ci$ 和价值 $Li$ 。对于某个点,从它子树中选出代价和不超过 $m$ 的一些点,可以获得 点数×当前点的价值 的收益。求最大收益。
对于以每个点为根的子树,一定是优先选代价小的,并且尽可能的多选。
每个节点维护一个可并堆(大根),从下至上合并,每次当总和大于$m$ 时弹出堆顶元素。
为了方便每个点记录一下堆顶(左偏树的根)$root[x]$ 。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 100050
typedef long long ll;
int n,m,head[N],to[N<<1],nxt[N<<1],val[N],cnt,ls[N],rs[N],dis[N],siz[N];
int rt,c[N],l[N],root[N];
ll sum[N],ans;
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
int merge(int x,int y) {
if(!x) return y;
if(!y) return x;
if(c[x]<c[y]) swap(x,y);
rs[x]=merge(rs[x],y);
if(dis[ls[x]]<dis[rs[x]]) swap(ls[x],rs[x]);
dis[x]=dis[rs[x]]+1;
return x;
}
void dfs(int x) {
int i;
root[x]=x; sum[x]=c[x]; siz[x]=1;
for(i=head[x];i;i=nxt[i]) {
dfs(to[i]);
sum[x]+=sum[to[i]],siz[x]+=siz[to[i]],root[x]=merge(root[x],root[to[i]]);
}
while(sum[x]>m) {
sum[x]-=c[root[x]]; siz[x]--; root[x]=merge(ls[root[x]],rs[root[x]]);
}
ans=max(ans,1ll*l[x]*siz[x]);
}
int main() {
dis[0]=-1;
int i,x;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++) {
scanf("%d%d%d",&x,&c[i],&l[i]);
if(!x) rt=i;
else add(x,i);
}
dfs(rt);
printf("%lld\n",ans);
}
BZOJ_2809_[Apio2012]dispatching_可并堆的更多相关文章
- 【BZOJ2809】[Apio2012]dispatching 可并堆
[BZOJ2809][Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 M ...
- BZOJ2809 [Apio2012]dispatching 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2809 题意概括 n个点组成一棵树,每个点都有一个领导力和费用,可以让一个点当领导,然后在这个点的子 ...
- bzoj 2809: [Apio2012]dispatching -- 可并堆
2809: [Apio2012]dispatching Time Limit: 10 Sec Memory Limit: 128 MB Description 在一个忍者的帮派里,一些忍者们被选中派 ...
- BZOJ 2809 [Apio2012]dispatching(斜堆+树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2809 [题目大意] 给出一棵树,求出每个点有个权值,和一个乘算值,请选取一棵子树, 并 ...
- [APIO2012]派遣 可并堆(左偏树)
没啥说的,自底向上合并大根堆即可. 一边合并,一边贪心弹堆顶直到堆的总和不大于预算. Code: #include <cstdio> #include <algorithm> ...
- [APIO2012]派遣 可并堆
Background 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿. Description 在这个帮派里,有一名忍者被称之为Master.除了Master以外,每名忍者 ...
- 2809: [Apio2012]dispatching 可并堆 左偏树
https://www.lydsy.com/JudgeOnline/problem.php?id=2809 板子题wa了一下因为输出ans没有lld #include<iostream> ...
- 浅谈左偏树在OI中的应用
Preface 可并堆,一个听起来很NB的数据结构,实际上比一般的堆就多了一个合并的操作. 考虑一般的堆合并时,当我们合并时只能暴力把一个堆里的元素一个一个插入另一个堆里,这样复杂度将达到\(\log ...
- 数据结构,可并堆(左偏树):COGS [APIO2012] 派遣
796. [APIO2012] 派遣 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿. 在这个帮派里,有一名忍者被称之为Master.除了Master以外,每名忍者都有且 ...
随机推荐
- IT轮子系列(三)——如何给返回类型添加注释——Swagger的使用(二)
前言 一般对外提供API,都会统一一个返回类型,比如所有的接口都统一返回HttpResponseMessage.这样当我们在方法上添加///注释时,是无法清楚的知道都返回字段都又那些以及它们的数据类型 ...
- java——内部类
内部类:将一个类定义在另一个类的里面,对里面那个类就称为内部类.内部类的访问特点: 1,内部类可以直接访问外部类的成员. 2,外部类要访问内部类,必须建立在内部类的对象.什么时候用? 一般用于类的设计 ...
- Bootstrap 4,“未捕获错误:Bootstrap工具提示需要Tether(http://github.hubspot.com/tether/)”
如果出现了这个错误,我想你是没有引用tether文件,这在v4之前不需要单独引入的. https://cdnjs.cloudflare.com/ajax/libs/tether/1.4.0/js/te ...
- 大型三甲医院信息管理系统源码 His系统功能齐全 完整可用
详情请点击查看 开发环境 :Asp.net + VS2005 + C# + SQL2010(含三种数据库access,oracle,sql server) 采用了BS+ActiveX + Web ...
- 落入绝地求生的Python神仙,实现绝地求生无后座!
叙述 绝地求生已经出来那么久了,大家应该都晓得如今的游戏情形很是差 .特别在高端局,神仙满天飞 搞得很多人类玩家很是没有游戏体验! 由于绝地求生的火爆,繁衍出许多外挂流传于各个地方.飞机上.网吧内,各 ...
- tomcat的配置使用详细版
摘要: 开发者开发部署web应用时通常使用tomcat服务器,很多初学者只懂得在开发工具上配置,但离开了开发工具,自己手动配置部署,并让一个项目跑起来,你会了吗.小编也遇到过这样的困扰.网上查找的资料 ...
- jQuery事件处理了解一下
>>> JQuery 事件处理 一.事件绑定方式 1.事件绑定的快捷方式: 缺点:绑定的事件,无法取消 $("button:eq(0)").dblclick(fu ...
- [CVPR2017] Visual Translation Embedding Network for Visual Relation Detection 论文笔记
http://www.ee.columbia.edu/ln/dvmm/publications/17/zhang2017visual.pdf Visual Translation Embedding ...
- 【转】高效利用Fundebug追踪Node.js日志发现问题
不管使用哪个语言做项目开发,我们都会自觉地用日志来做相关记录.比如,HTTP请求,报错信息.某些关键节点埋点记录等等.在Java中有大名鼎鼎的Log4J,于是在Node.js中也有了log4js. 日 ...
- 从CSDN到cnblogs
博客热的年代,我也赶潮流,开了不少,以前的blogbus博客大巴,CSDN,以及MSN space,再到新浪博客,微博... 提笔写的热情越来越少,这次准备重新整理以前在CSTQB.业界分享的一些内容 ...