洛谷 P2762 太空飞行计划问题 P3410 拍照【最大权闭合子图】题解+代码


最大权闭合子图

定义:

如果对于一个点集合,其中任何一个点都不能到达此集合以外的点,这就叫做闭合子图。每个点都有一个权值,那么最大权闭合子图就是权值最大的那个闭合子图。

(或者说对于一个点集,这个点集中所有点的出边所指向的点都在此点集中)

求解

超级源点向每个权值为正的点连边,容量为该点权值

每个点权为负的点向超级汇点连边,容量为该点权值相反数

原图中的变,容量为inf

然后跑最小割(最大流)

最后用正点权的总和-最大流即为最大权闭合子图的权值

证明

参考——胡伯涛《最小割模型在信息学竞赛中的应用》

(蒟蒻的我看不懂)


拍照

题目描述

小B有n个下属,现小B要带着一些下属让别人拍照。

有m个人,每个人都愿意付给小B一定钱让n个人中的一些人进行合影。如果这一些人没带齐那么就不能拍照,小B也不会得到钱。

注意:带下属不是白带的!!!对于每个下属,如果他带了那么小B需要给他一些钱,保证当他拍照时配合。

请问,小B的净收益最多是多少。

输入格式:

第1行有2个正整数m和n(0

输出格式:

一个数,表示最大收益。小B可以一个人也不带。

输入样例

2 3

10 1 2 0

25 2 3 0

5 6 7

输出样例

17

说明

对于10%的数据每个人都要求让全部n个人合影

对于30%的数据n<=15 m<=15

另有10%的数据答案为0

对于50%的数据n<=40 m<=40

另有10%的数据每个人只愿意拍一个人

对于100%的数据m,n<=100


题目分析

特别适合练手的最大权闭合子图

超级源点向每个拍照请求连边

容量为这个拍照请求的收益

每个员工向超级汇点连边

容量为带该员工需要付的钱

最后m个拍照请求

每个拍照请求向指定的员工连边

容量为inf


#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<queue>
#include<cstring>
using namespace std;

const int inf=1e9;
int n,m;
int sum;
int tot=1;
int w[1000010];//记录每个拍照请求的收益
int c[100010];//记录带每个员工需要的钱
int s=0,t;
struct node{int v,f,nxt;}E[1000010];
int head[100010];
int lev[100010];
int maxf;

void add(int u,int v,int cap)
{
    E[++tot].nxt=head[u];
    E[tot].v=v;
    E[tot].f=cap;
    head[u]=tot;
}

bool bfs()
{
    queue<int> q;
    memset(lev,-1,sizeof(lev));
    q.push(s);
    lev[s]=0;

    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=head[u];i;i=E[i].nxt)
        {
            int v=E[i].v;
            if(lev[v]==-1&&E[i].f)
            {
                lev[v]=lev[u]+1;
                if(v==t) return true;
                q.push(v);
            }
        }
    }
    return false;
}

int dfs(int u,int cap)
{
    if(u==t)
    return cap;

    int flow=cap;
    for(int i=head[u];i;i=E[i].nxt)
    {
        int v=E[i].v;
        if(lev[v]==lev[u]+1&&flow&&E[i].f>0)
        {
            int f=dfs(v,min(flow,E[i].f));
            flow-=f;
            E[i].f-=f;
            E[i^1].f+=f;
        }
    }
    return cap-flow;
}

int main()
{
    cin>>m>>n;
    t=n+m+1;
    for(int i=1;i<=m;i++)
    {
        int cap; cin>>cap;
        w[i]=cap;
        sum+=cap;//记录收益总值
        while(1)
        {
            int u;cin>>u;
            if(u==0) break;
            add(n+i,u,inf);
            add(u,n+i,0);
            //每个拍照请求向指定员工连边
        }
    }
    for(int i=1;i<=n;i++)
    cin>>c[i];

    for(int i=n+1;i<=n+m;i++)
    {
        add(s,i,w[i-n]);
        add(i,s,0);//超级源点向拍照请求连边
    }
    for(int i=1;i<=n;i++)
    {
        add(i,t,c[i]);
        add(t,i,0);//员工向超级汇点连边
    }

    while(bfs())//最小割
    maxf+=dfs(s,inf);

    cout<<sum-maxf;
    return 0;
}

太空飞行计划问题

题目描述

W 教授正在为国家航天中心计划一系列的太空飞行。每次太空飞行可进行一系列商业性实验而获取利润。现已确定了一个可供选择的实验集合E={E1,E2,…,Em},和进行这些实验需要使用的全部仪器的集合I={I1,I2,…In}。实验Ej需要用到的仪器是I的子集RjÍI。配置仪器Ik的费用为ck美元。实验Ej的赞助商已同意为该实验结果支付pj美元。W教授的任务是找出一个有效算法,确定在一次太空飞行中要进行哪些实验并因此而配置哪些仪器才能使太空飞行的净收益最大。这里净收益是指进行实验所获得的全部收入与配置仪器的全部费用的差额。

对于给定的实验和仪器配置情况,编程找出净收益最大的试验计划。

输入格式:

第1行有2 个正整数m和n。m是实验数,n是仪器数。接下来的m 行,每行是一个实验的有关数据。第一个数赞助商同意支付该实验的费用;接着是该实验需要用到的若干仪器的编号。最后一行的n个数是配置每个仪器的费用。

输出格式:

第1 行是实验编号;第2行是仪器编号;最后一行是净收益。

输入输出样例

输入样例

2 3

10 1 2

25 2 3

5 6 7

输出样例

1 2

1 2 3

17


题目分析

最大收益套用上面讲的最大闭合权子图求法

方案选择:

在最小割求出后在建立一次层次图

有层次的就是选择的实验与仪器

(这题的输入活活卡了我半小时 = = )


#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<queue>
#include<cstring>
using namespace std;

const int inf=1e9;
int n,m;
int s=0,t;
int sum=0,tot=1;
struct node{int v,f,nxt;}E[100010];
int head[100010];
int lev[100010];
int maxf;
bool ept[100010],craft[100010];

inline void add(int u,int v,int cap)
{
    E[++tot].nxt=head[u];
    E[tot].v=v;
    E[tot].f=cap;
    head[u]=tot;
}

bool bfs()
{
    memset(lev,-1,sizeof(lev));
    queue<int> q;
    lev[s]=0;
    q.push(s);

    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=head[u];i;i=E[i].nxt)
        {
            int v=E[i].v;
            if(lev[v]==-1&&E[i].f)
            {
                lev[v]=lev[u]+1;
                if(v==t) return true;
                q.push(v);
            }
        }
    }
    return false;
}

int dfs(int u,int cap)
{
    if(u==t)
    return cap;

    int flow=cap;
    for(int i=head[u];i;i=E[i].nxt)
    {
        int v=E[i].v;
        if(lev[v]==lev[u]+1&&flow&&E[i].f>0)
        {
            int f=dfs(v,min(flow,E[i].f));
            flow-=f;
            E[i].f-=f;
            E[i^1].f+=f;
        }
    }
    return cap-flow;
}

int main()
{
    cin>>n>>m;
    t=m+n+1;
    for(int i=1;i<=n;i++)
    {
        int cap;cin>>cap;
        sum+=cap;
        add(s,i,cap);
        add(i,s,0);

        char ss=getchar();
        while(ss!='\n'&&ss!='\r') //这个输入自行体会一下吧 = =
        {
            int x=0;
            while(ss>='0'&&ss<='9') x=x*10+ss-'0',ss=getchar();
            if(x) add(i,x+n,inf),add(x+n,i,0);
            if(ss!='\n'&&ss!='\r') ss=getchar();
        }
    }

    for(int i=n+1;i<=n+m;i++)
    {
        int cost;cin>>cost;
        add(i,t,cost);
        add(t,i,0);
    }

    while(bfs())
    maxf+=dfs(s,inf);

    bfs();//在此建立层次图求解方案
    for(int i=1;i<=n;i++)
    if(lev[i]!=-1)
    cout<<i<<" ";

    cout<<endl;

    for(int i=n+1;i<=n+m;i++)
    if(lev[i]!=-1)
    cout<<i-n<<" ";

    cout<<endl<<sum-maxf;
    return 0;
}

洛谷 P2762 太空飞行计划问题 P3410 拍照【最大权闭合子图】题解+代码的更多相关文章

  1. 洛谷 P4174 [NOI2006]最大获利 && 洛谷 P2762 太空飞行计划问题 (最大权闭合子图 && 最小割输出任意一组方案)

    https://www.luogu.org/problemnew/show/P4174 最大权闭合子图的模板 每个通讯站建一个点,点权为-Pi:每个用户建一个点,点权为Ci,分别向Ai和Bi对应的点连 ...

  2. 洛谷 - P2762 - 太空飞行计划问题 - 最小割

    https://www.luogu.org/problemnew/solution/P2762 最小割对应的点,在最后一次更新中dinic的bfs会把他的dep重置掉.所以可以根据这个性质复原最小割. ...

  3. 洛谷 [P2762] 太空飞行计划问题

    最大权闭合子图 胡伯涛论文真是个好东西.jpg 求一个有向图的最大权闭合子图,常应用于有先决条件的最优化问题中 将所有正权点与源点相连,容量为点权; 将所有负权点与汇点相连,容量为点权的相反数; 将原 ...

  4. 洛谷P2762 太空飞行计划问题

    这题套路好深......没想渠. 题意:给你若干个设备,若干个任务. 每个任务需要若干设备,设备可重复利用. 完成任务有钱,买设备要钱. 问最大总收益(可以什么任务都不做). 解:最大权闭合子图. 对 ...

  5. 洛谷P2762 太空飞行计划问题(最小割)

    传送门 我们可以把实验放在左边,仪器放在右边,点有点权,然后连对应的有向边,就是求一个最大权闭合图,可以转化为最小割来做(关于这具体是个啥……可以百度胡伯涛<最小割模型在信息学竞赛中的应用> ...

  6. 洛谷P2762 太空飞行计划问题(最大权闭合图)

    题意 有$m$个实验,$n$中器材,每个实验需要使用一些器材 每个实验有收入,每个器材有花费 最大化收入 - 花费 Sol 最大权闭合图的经典应用 从$S$向每个实验连流量为该实验收入的边 从每个器材 ...

  7. 洛谷 P2762 太空飞行计划问题 【最大权闭合子图+最小割】

    --一道难在读入的题. 最后解决方案直接getline一行然后是把读优拆掉放进函数,虽然很丑但是过了. 然后就是裸的最大权闭合子图了,把仪器当成负权点向t连流量为其价格的边,s向实验连流量为实验报酬的 ...

  8. [网络流24题] 太空飞行计划问题 (最大流->最大权闭合图)

    洛谷传送门 LOJ传送门 做这道题之前建议先看这篇论文,虽然论文里很多地方用了很多术语,但hbt神犇讲得很明白 这篇题解更加偏向于感性理解 把问题放到二分图上,左侧一列点是实验,权值为$p[i]$,右 ...

  9. 洛谷 - P1361 - 小M的作物 - 最小割 - 最大权闭合子图

    第一次做最小割,不是很理解. https://www.luogu.org/problemnew/show/P1361 要把东西分进两类里,好像可以应用最小割的模板,其中一类A作为源点,另一类B作为汇点 ...

随机推荐

  1. putty怎么用?如何使用Putty远程管理Linux主机

    Putty是一个免费的Windows 32平台下用于telnet.rlogin和ssh客户端的远程客户端工具,可以通过PUTTY快速的实现SSH连接linux等主机,下面小编就给大家演示一下如何使用P ...

  2. DEDECMS点击主栏目默认显示第一个子栏目列表的方法

    本文实例讲述了DEDECMS点击主栏目默认显示第一个子栏目列表的方法.分享给大家供大家参考.具体分析如下: 今天公司有个需求是,点击导航上的父栏目进去默认显示第一个子栏目的列表,以下是具体实现方法,可 ...

  3. Effective Java 第三版——26. 不要使用原始类型

    Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...

  4. 【开发技术】如何查看项目中struts的版本

    struts-configer.xml(struts1)或struts.xml(struts2)中 struts-2.0.dtd处表示版本号

  5. web前端学习(2):开始编写HTML

    在第一章中,我们初步了解了上网的过程,同时也明白了所谓网页,其本质就是主要用HTML语言所写的一份文档.相信大多数人在了解HTML文件前,最先接触的是利用"记事本"所写的文档或者是 ...

  6. winform webbrowser如何强制使用ie11内核?

    webkit.net ,cefsharp,openwebkit.net等这些基于谷歌或者基于firfox内核的浏览器有个共同点,就是必须指定winform为x86的才能使用, 而且使用过程中也是各种坑 ...

  7. what is yaml ?

    what is yaml  ? when I fist time meeting it  is in java projects she as a system config file to my e ...

  8. HierarchyID 数据类型用法

    树形层次结构(Hierarchy)经常出现在有结构的数据中,T-SQL新增数据类型HierarchyID, 其长度可变,用于存储层次结构中的路径.HierarchyID表示的层次结构是树形的,由应用程 ...

  9. .net Core学习笔记1 创建简单的 .net core项目

    1.打开vs2017>Web 1:创建实体类: namespace ProductMvc.Models { //商品类型 public class ProductType { public in ...

  10. 微信屏蔽js分享、复制链接

    页面内引入js(不放在页面内部不起作用) $(function(){ function onBridgeReady() { WeixinJSBridge.call('hideOptionMenu'); ...