http://blog.csdn.net/pipisorry/article/details/48882167

海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之局部敏感哈希LSH的距离度量方法

Distance Measures距离度量方法

{There are many other notions of similarity(beyond jaccard similarity) or distance and which one to use depends on what type of data we have and what our notion of similar is.Beside it is possible to combine hash functions from a family,to get the s curve
affect that we saw for LSH applied to min-hash matrices.In fact, the construction is essentially the same for any LSH family.And we'll conclude this unit by seeing some particular LSH families, and how they work for the cosine distance and Euclidean distance.}

Euclidean distance Vs. Non-Euclidean distance 欧氏距离对比非欧氏距离

Note: dense: given any two points,their average will be a point in the space.And there is no reasonable notion of the average of points in the space.欧氏距离可以计算average,但是非欧氏距离却不一定。

Axioms of Distance Measures 距离度量公理

距离度量就满足的性质

Note: iff =  if and only if [英文文献中常见拉丁字母缩写整理(红色最常见)]

皮皮blog

欧氏距离

Note: 范数Norm:

给定向量x=(x1,x2,...xn)

L1范数:向量各个元素绝对值之和,Manhattan distance。

L2范数:向量各个元素的平方求和然后求平方根,也叫欧式范数、欧氏距离。

Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方

L∞范数:向量各个元素求绝对值,最大那个元素的绝对值

皮皮blog

非欧氏距离

  

Note:

1. cosine distance: requires points to be vectors, if the vectors have real numbers as components, then they are essentially points in the Euclidean space.But the vectors could have integer components in which case the space is not Euclidean.

2. 编辑距离有两种方式:一种是直接将其中一个元音字符替换成另 一个,一种是先删除字符再插入另一个字符。

非欧氏距离及其满足公理性质的证明:

Jaccard Dist

Note: Proof中使用反证法:两个都不成立,即都相等时,minhash(x)=minhash(y)了。

Cosine Dist余弦距离

cosine distance is useful for data that is in the form of a vector.Often the vector is in very high dimensions.

  

Note:

1. The length of a vector from the origin is actually the normal Euclidian distance,what we call the L2 norm.

2. No matter how many dimensions the vectors have, any two lines that intersect, and P1 and P2 do intersect at the origin,they'll follow a plane.

3. if you project P1 onto P2,the length of the projection is the dot product, divided by the length of P2.Then the cosine of the angle between them is the ratio of adjacent(the dot product divided by P2) over hypotenuse(斜边, the length of P1).

Note: vectors here are really directions, not magnitudes.So two vectors with the same direction and different magnitudes are really the same vector.Even to vector and its negation, the reverse of the vector,ought to be thought of as the
same vector.

Edit distance编辑距离



子串的定义:one string is a sub-sequence of another if we can get the first by deleting 0 or more positions from the second.the positions of the deleted characters did not have to be consecutive.

计算x,y编辑距离的两种方式

Note: 第一种方式中我们可以逆向编辑:we can get from y to x by doing the same edits in reverse.delete u and v,and then we insert a to get x.

Hamming distance汉明距离

Reviews复习

Note:距离矩阵

he     she    his    hers

he                1        3        2

she                        4        3

his                                    3

from:http://blog.csdn.net/pipisorry/article/details/48882167

ref: 距离和相似性度量方法

海量数据挖掘MMDS week2: LSH的距离度量方法的更多相关文章

  1. 海量数据挖掘MMDS week2: 局部敏感哈希Locality-Sensitive Hashing, LSH

    http://blog.csdn.net/pipisorry/article/details/48858661 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  2. 海量数据挖掘MMDS week2: 频繁项集挖掘 Apriori算法的改进:非hash方法

    http://blog.csdn.net/pipisorry/article/details/48914067 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  3. 海量数据挖掘MMDS week2: Nearest-Neighbor Learning最近邻学习

    http://blog.csdn.net/pipisorry/article/details/48894963 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  4. 海量数据挖掘MMDS week2: 频繁项集挖掘 Apriori算法的改进:基于hash的方法

    http://blog.csdn.net/pipisorry/article/details/48901217 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  5. 海量数据挖掘MMDS week2: Association Rules关联规则与频繁项集挖掘

    http://blog.csdn.net/pipisorry/article/details/48894977 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  6. 海量数据挖掘MMDS week7: 局部敏感哈希LSH(进阶)

    http://blog.csdn.net/pipisorry/article/details/49686913 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  7. 海量数据挖掘MMDS week3:社交网络之社区检测:高级技巧

    http://blog.csdn.net/pipisorry/article/details/49052255 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  8. 海量数据挖掘MMDS week5: 聚类clustering

    http://blog.csdn.net/pipisorry/article/details/49427989 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

  9. 海量数据挖掘MMDS week4: 推荐系统Recommendation System

    http://blog.csdn.net/pipisorry/article/details/49205589 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...

随机推荐

  1. matlab sparse函数和full函数用法详解(转)

    sparse函数 功能:Create sparse matrix-创建稀疏矩阵 用法1:S=sparse(X)--将矩阵X转化为稀疏矩阵的形式,即矩阵X中任何零元素去除,非零元素及其下标(索引)组成矩 ...

  2. Go 语言Map(集合)

    Map 是一种无序的键值对的集合.Map 最重要的一点是通过 key 来快速检索数据,key 类似于索引,指向数据的值. Map 是一种集合,所以我们可以像迭代数组和切片那样迭代它.不过,Map 是无 ...

  3. Dynamics CRM2016 WebApi查询之alternate key

    本篇继续来分享web api查询中的一条,利用alternate key进行查询. alternate key是个什么东西这里就不解释了如果有不知道的可以去看sdk.这里以房号信息实体为例,新建一个键 ...

  4. Bootstrap3 排版-页面主体

    Bootstrap 将全局 font-size 设置为 14px,line-height 设置为 1.428.这些属性直接赋予 元素和所有段落元素.另外,<p> (段落)元素还被设置了等于 ...

  5. post插件

    分享牛系列,分享牛专栏,分享牛.在项目开发中,http请求方式是最常见的了.怎么模拟http请求呢?方法有很多种,可以使用httpclient直接模拟请求,也可以使用火狐post插件方式,这个章节主要 ...

  6. java解决Url带中文参数乱码问题

    首先打开Tomcat安装目录,打开conf文件,打开server.xml,找到这段代码: <Connector port="8080" protocol="HTTP ...

  7. Linux 高性能服务器编程——I/O复用

    问题聚焦:     前篇提到了I/O处理单元的四种I/O模型.     本篇详细介绍实现这些I/O模型所用到的相关技术.     核心思想:I/O复用 使用情景: 客户端程序要同时处理多个socket ...

  8. Android捕获全局异常

    Android捕获全局异常 程序避免不了出现bug,导致程序崩溃,为了尽量不影响用户体验,可以全局捕获异常 效果图 异常捕获处理前 异常捕获处理后(将程序重新启动) 捕获异常的工具类 package ...

  9. Android Multimedia框架总结(六)C++中MediaPlayer的C/S架构

    转载请把头部出处链接和尾部二维码一起转载,本文出自: http://blog.csdn.net/hejjunlin/article/details/52435789 前面几节中,都是通过java层调用 ...

  10. memcached实战系列(三)memcached命令使用

    memcached命令的使用,在这里我们最好了解一下命令的含义,对命令有一个大致的了解,在了解的基础上进行使用.这里的命名是常用的crud命令的演示. 1.1.1. memcached命令的格式 标准 ...