题目传送门

PS:本道题目建议在对状压dp有一定了解的基础下学习,如有不懂可以先去学一下状压dp入门


题目大意:给你n*m个格子,有些格子可以用来部署军队,用P表示,有些则不能,用H表示,如果在一个格子上部署了军队,则上下左右各2个格子都不能部署军队,也就是呈十字架状,看到数据范围(n<=100,m<=10)很容易想到使用状压dp,因为m列数最大只有10,我们可以压缩每一行的状态,最大只有(1<<10)-1种状态,但是由于这一行的状态对下一行以及下两行都有影响,我们需要一个三维数组来保存状态,dp[i][j][k],代表第i行状态为j,上一行状态为k最大能部署的军队数,那么我们应该就能推出状态转移方程:

dp[i][j][k]=max(dp[i][j][k],dp[i-1][k][l]+num[i])(l为上两行的状态,num[i]为状态为i时能部署的军队数)


但是有一个问题,就是n最大为10,但是我们的数组好像还是开不下,dp[110][1<<10][1<10]显然是超内存的,怎么办呢?我们其实可以抓住如果在一个格子上部署军队则左右两边各2个格子都不能部署军队这一点来预处理进而达到缩小内存的方法,那么怎么预处理呢,其实和那道入门题的判断方法是一样的,我们将某一个状态分别右移1位,2位,这样便得到三个状态,然后两两相与,如果都等于0说明这个状态是合法的,那么这样下来最多的状态数也只有60个,这样数组就足够用了

具体实现方法如下

in(n);in(m);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
char ch;
cin>>ch;
if(ch=='H') cur[i]|=<<(j-);//记得反过来存
}
}

然后就是保存每一行是否可以部署军队的操作,这里记得要将P和H反过来存,若为正着存,则后面不部署军队的情况是考虑不到的,应该很好理解吧

in(n);in(m);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
char ch;
cin>>ch;
if(ch=='H') cur[i]|=<<(j-);//记得反过来存
}
}

然后就是dp部分了,因为从第三行开始,后面的行的状态都与前面一行及两行的状态有关,因此我们先处理出第一行以及第二行的状态,以便后面的递推

第一行的时候我们是不需要判断前面的行数的,因此只需要判断这一行的状态是否和合法就行了

而第二行的时候我们则需要根据在第二行状态合法的前提下还需要根据第一行的状态看有没有冲突的的情况,这种情况是要舍去的,其他的就没什么好讲的了

for(int i=;i<=cnt;i++)//不用判断上一行
{
if(!(cur[]&can[i]))
{
dp[][i][]=max(dp[][i][],num[i]);
tot=max(tot,dp[][i][]);
}
}
//处理第一行
for(int i=;i<=cnt;i++)//只用判断上一行
{
if(!(cur[]&can[i]))
{
for(int j=;j<=cnt;j++)
{
if(!(cur[]&can[j]) && !(can[i]&can[j]))
{
dp[][i][j]=max(dp[][i][j],dp[][j][]+num[i]);
tot=max(tot,dp[][i][j]);
}
}
}
}
//处理第二行

其实后面的行数跟前面的判断差不多,就是先判断本行再判断上一行,再判断上两行,最判断这三个状态有没有冲突,只要有一个存在冲突,这种状态就是不合法的,那么我们就把它舍去

最后上个完整版代码

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<cstring>
#define in(i) (i=read())
using namespace std;
int read()
{
int ans=,f=; char i=getchar();
while(i<''||i>'') {if(i=='-') f=-; i=getchar();}
while(i>=''&&i<='') ans=(ans<<)+(ans<<)+i-'',i=getchar();
return ans*f;
}
int dp[][][];
int can[];
int cur[];
int num[];
int n,m,cnt,tot;
int get(int x)
{
int ans=;
for(int i=;i<=m;i++)
if((x&(<<(i-)))!=) ans++;//判断是否可以部署军队,若可以则ans++
return ans;
}
void init()
{
for(int i=;i<(<<m);i++) {
if(!(i&(i>>)) && !(i&(i>>)) && !((i>>)&(i>>))){//相邻之间没有1
can[++cnt]=i;
num[cnt]=get(i);
}
}
//cout<<cnt<<endl;-------算出来最大只有60
}
int main()
{
in(n);in(m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++) {
char ch; cin>>ch;
if(ch=='H') cur[i]|=<<(j-);//记得反过来存
}
init();//预处理
for(int i=;i<=cnt;i++)//不用判断上一行
if(!(cur[]&can[i])){
dp[][i][]=max(dp[][i][],num[i]);
tot=max(tot,dp[][i][]);
}
//处理第一行
for(int i=;i<=cnt;i++)//只用判断上一行
{
if((cur[]&can[i])) continue;
for(int j=;j<=cnt;j++)
if(!(cur[]&can[j]) && !(can[i]&can[j])) {
dp[][i][j]=max(dp[][i][j],dp[][j][]+num[i]);
tot=max(tot,dp[][i][j]);
}
}
//处理第二行
for(int i=;i<=n;i++)//枚举行数,对后n-2行进行处理
for(int j=;j<=cnt;j++){//枚举第i行的状态
if((cur[i]&can[j])) continue;//判断本行是否有冲突
for(int k=;k<=cnt;k++){//若无则枚举下一行的状态
if((cur[i-]&can[k])) continue;//判断上一行状态是否有冲突
for(int l=;l<=cnt;l++){//枚举上上一行状态
if((cur[i-]&can[l])) continue;
if(!(can[j]&can[k]) && !(can[j]&can[l]) && !(can[k]&can[l])){//若都无冲突
dp[i][j][k]=max(dp[i][j][k],dp[i-][k][l]+num[j]);//状态转移
tot=max(tot,dp[i][j][k]);
}
}
}
}
cout<<tot<<endl;
return ;
}
												

NOI2001炮兵阵地的更多相关文章

  1. [洛谷P2704] [NOI2001]炮兵阵地

    洛谷题目链接:[NOI2001]炮兵阵地 题目描述 司令部的将军们打算在NM的网格地图上部署他们的炮兵部队.一个NM的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示), ...

  2. C++ 洛谷 P2704 [NOI2001]炮兵阵地

    P2704 [NOI2001]炮兵阵地 没学状压DP的看一下 此题意思很简单,如下图,就是十字架上的不能有两个点放炮兵. 在做此题前,先做一下玉米田 玉米田题解 分析: 而m即一行的个数小于等于10, ...

  3. P2704 [NOI2001]炮兵阵地 (状压DP)

    题目: P2704 [NOI2001]炮兵阵地 解析: 和互不侵犯一样 就是多了一格 用\(f[i][j][k]\)表示第i行,上一行状态为\(j\),上上行状态为\(k\)的最多的可以放的炮兵 发现 ...

  4. 洛谷P2704 [NOI2001]炮兵阵地 [状压DP]

    题目传送门 炮兵阵地 题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图 ...

  5. [Poj1185][Noi2001]炮兵阵地(状压dp)

    炮兵阵地 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29476   Accepted: 11411 Descriptio ...

  6. P2704 [NOI2001]炮兵阵地

    题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...

  7. [NOI2001]炮兵阵地 【状压DP】

    #\(\color{red}{\mathcal{Description}}\) \(Link\) 司令部的将军们打算在\(N \times M\)的网格地图上部署他们的炮兵部队.一个\(N \time ...

  8. [NOI2001]炮兵阵地 状压DP

    题面: 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最多 ...

  9. Luogu 2704 [NOI2001]炮兵阵地

    唔,想到了状压之后就不会了……实在是菜 考虑压两行,设$f_{i, j, k}$表示当前到第$i$行,上一行是$j$状态,前一行是$k$状态的最多能放的炮兵的数量. 发现第一维还可以滚掉,好像可以转移 ...

  10. 洛谷2704 [NOI2001]炮兵阵地

    题目戳这里 Solution 状压DP很好的入门题,用熟练位运算貌似也没那么难. 首先分析一下题目: 看见n=100,m=10,立马就想到了状压,看起来也像DP,所以我们还是采用行号为阶段的状压DP. ...

随机推荐

  1. python requests库学习笔记(下)

    1.请求异常处理 请求异常类型: 请求超时处理(timeout): 实现代码: import requestsfrom requests import exceptions        #引入exc ...

  2. 剑指offer第一天

    15.反转链表 输入一个链表,反转链表后,输出链表的所有元素. 解法一:(使用栈) /* public class ListNode { int val; ListNode next = null; ...

  3. json字符串转换成json对象,json对象转换成字符串,值转换成字符串,字符串转成值

    一.json相关概念 json,全称为javascript object notation,是一种轻量级的数据交互格式.采用完全独立于语言的文本格式,是一种理想的数据交换格式. 同时,json是jav ...

  4. javascript正则表达式的一些笔记

    正则表达式:Regular Expression.使用单个字符串来描述,匹配一系列符合某个句法规则的字符串.即按照某种规则去匹配符合条件的字符串.正则表达式就是规则. \b 单词边界 regexp对象 ...

  5. windows NLB实现MSSQL读写分离--从数据库集群读负载均衡

    主从模式,几乎大部分出名的数据库都支持的一种集群模式. 当Web站点的访问量上去之后,很多站点,选择读写分离,减轻主数据库的的压力.当然,一主多从也可以作用多个功能,比如备份.这里主要演示如何实现从数 ...

  6. Python基于Flask框架配置依赖包信息的项目迁移部署小技巧

    一般在本机上完成基于Flask框架的代码编写后,如果有接口或者数据操作方面需求需要把代码部署到指定服务器上. 一般情况下,使用Flask框架开发者大多数都是选择Python虚拟环境来运行项目,不同的虚 ...

  7. HDP2.0测试

    1.测试Hbase (1)hive导入hbase

  8. Bootloader Project

    Bootloader Project From OMAPpedia Jump to: navigation, search Contents [hide] 1 OMAP Bootloader Over ...

  9. JBoss启动项目报错

    具体报错如下: WARNING: -logmodule is deprecated. Please use the system property 'java.util.logging.manager ...

  10. 获取Filter的三种途径

    一.通过CLSID [cpp] view plaincopyprint? IBaseFilter *pF = 0; HRESULT hr = CoCreateInstance(clsid, 0, CL ...