python数据可视化学习1
import matplotlib.pyplot as plt
input_values = [1,2,3,4,5] #输入值
squares = [1,4,9,16,25] #输出值
plt.plot(input_values,squares,linewidth = 5) #如果没有输入值 则从0开始
# 设置图标标题,并给坐标轴加上标签
plt.title("Square Numbers",fontsize = 24)
plt.xlabel('Value',fontsize = 14)
plt.ylabel("Square of Value",fontsize = 14) #设置可读标记的大小
plt.tick_params(axis = 'both',labelsize = 14) #xy轴都要就用both 标签大小
plt.show()

import matplotlib.pyplot as plt
x_values = [1,2,3,4,5]
y_values = [1,4,9,16,25]
plt.scatter(x_values,y_values,s=100) #点的尺寸
#设置标题加标签
plt.title('Square Numbers',fontsize = 24)
plt.xlabel('Value ' ,fontsize = 14)
plt.ylabel('Square of Value',fontsize = 14) #设置可读标记的大小
plt.tick_params(axis = 'both',which = 'major',labelsize = 14)
plt.show()

import matplotlib.pyplot as plt
x_values = list(range(1,1001)) #列表 1~1000
y_values = [x**2 for x in x_values]
plt.scatter(x_values,y_values,c='red',edgecolor = 'none',s=40) #颜色 轮廓颜色 点的尺寸 也可以(0,0,0.8) 这里取0~1代表红绿蓝分量 越大越深
#设置标题加标签
plt.title('Square Numbers',fontsize = 24)
plt.xlabel('Value ' ,fontsize = 14)
plt.ylabel('Square of Value',fontsize = 14) #设置可读标记的大小
plt.tick_params(axis = 'both',which = 'major',labelsize = 14) #设置每个坐标轴的取值范围
plt.axis([0,1100,0,1100000]) #x 0~1100 y 0~1100000
plt.show()

import matplotlib.pyplot as plt
x_values = list(range(1001)) #列表 1~1000
y_values = [x**2 for x in x_values]
plt.scatter(x_values,y_values,c=y_values,cmap = plt.cm.Blues,edgecolor = 'none',s=40) #颜色设置成一个y值的列表 然后y小则浅蓝 大则深蓝 轮廓颜色 点的尺寸
#设置标题加标签
plt.title('Square Numbers',fontsize = 24)
plt.xlabel('Value ' ,fontsize = 14)
plt.ylabel('Square of Value',fontsize = 14) #设置可读标记的大小
plt.tick_params(axis = 'both',which = 'major',labelsize = 14) #设置每个坐标轴的取值范围
plt.axis([0,1100,0,1100000]) #x 0~1100 y 0~1100000
plt.show()

plk.savefig('squares_plot.png',bbox_inches = 'tight') 可以直接保存 第一个为文件名 第二个为裁去多余部分
from random import choice class RandomWalk():
'''一个生成随机漫步数据的类''' def __init__(self,num_points = 5000):
'''初始化随机漫步的属性'''
self.num_points = num_points #所有随机漫步都始于(0,0)
self.x_values = [0]
self.y_values = [0] def fill_walk(self):
'''计算随机漫步包含的所有点''' #不断漫步,知道列表达到指定的长度
while len(self.x_values)<self.num_points: #决定前进方向以级演这个方向前进的举例
x_direction = choice ([1,-1])
x_distance = choice([0,1,2,3,4])
x_step = x_direction * x_distance y_direction = choice ([1,-1])
y_distance = choice ([0,1,2,3,4])
y_step = y_direction * y_distance #拒绝原地踏步
if x_step == 0 and y_step == 0:
continue #计算下一个点的x和y值
next_x = self.x_values[-1] + x_step #-1是最后一个
next_y = self.y_values[-1] + y_step self.x_values.append(next_x)
self.y_values.append(next_y)
import matplotlib.pyplot as plt from random_walk import RandomWalk #创建一个randomwalk实例 并绘制所有点
while True:
rw = RandomWalk()
rw.fill_walk()
plt.scatter(rw.x_values,rw.y_values,s=15)
plt.show()
keep_running=input('Make another walk?(y/n): ')
if keep_running == 'n':
break


import matplotlib.pyplot as plt from random_walk import RandomWalk #创建一个randomwalk实例 并绘制所有点
while True:
rw = RandomWalk(200000) #增加点数
rw.fill_walk()
#设置绘图窗口的尺寸
plt.figure(dpi=128,figsize = (10,6)) #分辨率
point_numbers = list(range(rw.num_points)) #设置了每个漫步点的编号来作为颜色
plt.scatter(rw.x_values,rw.y_values,s=1,c=point_numbers, #参数c位编号列表
cmap = plt.cm.Blues,edgecolor = 'none') #蓝色映射
plt.scatter(0,0,c='green',edgecolors = 'none',s=100) #起点
plt.scatter(rw.x_values[-1],rw.y_values[-1],c='red',edgecolors = 'none',
s=100) #终点
plt.axes().get_xaxis().set_visible(False) #影藏坐标轴
plt.axes().get_yaxis().set_visible(False)
plt.show()
keep_running=input('Make another walk?(y/n): ')
if keep_running == 'n':
break

python数据可视化学习1的更多相关文章
- Python数据可视化编程实战pdf
Python数据可视化编程实战(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1vAvKwCry4P4QeofW-RqZ_A 提取码:9pcd 复制这段内容后打开百度 ...
- Python数据可视化的四种简易方法
摘要: 本文讲述了热图.二维密度图.蜘蛛图.树形图这四种Python数据可视化方法. 数据可视化是任何数据科学或机器学习项目的一个重要组成部分.人们常常会从探索数据分析(EDA)开始,来深入了解数据, ...
- python 数据可视化
一.基本用法 import numpy as np import matplotlib.pyplot as plt x = np.linspace(-1,1,50) # 生成-1到1 ,平分50个点 ...
- Python数据可视化基础讲解
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:爱数据学习社 首先,要知道我们用哪些库来画图? matplotlib ...
- 《数据可视化之美》高清PDF全彩版|百度网盘免费下载|Python数据可视化
<数据可视化之美>高清PDF全彩版|百度网盘免费下载|Python数据可视化 提取码:i0il 内容简介 <数据可视化之美>内容简介:可视化是数据描述的图形表示,旨在一目了然地 ...
- python数据可视化编程实战PDF高清电子书
点击获取提取码:3l5m 内容简介 <Python数据可视化编程实战>是一本使用Python实现数据可视化编程的实战指南,介绍了如何使用Python最流行的库,通过60余种方法创建美观的数 ...
- python数据可视化-matplotlib入门(7)-从网络加载数据及数据可视化的小总结
除了从文件加载数据,另一个数据源是互联网,互联网每天产生各种不同的数据,可以用各种各样的方式从互联网加载数据. 一.了解 Web API Web 应用编程接口(API)自动请求网站的特定信息,再对这些 ...
- Python数据可视化编程实战——导入数据
1.从csv文件导入数据 原理:with语句打开文件并绑定到对象f.不必担心在操作完资源后去关闭数据文件,with的上下文管理器会帮助处理.然后,csv.reader()方法返回reader对象,通过 ...
- Python数据可视化——使用Matplotlib创建散点图
Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...
随机推荐
- jquery与js添加子元素
例如在select中添加option JQuery做法: <select id="myselect" name="myselect"> </s ...
- Linux指令--more,less
文章出处:http://www.cnblogs.com/peida/archive/2012/11/05/2754477.html,感谢原作者无私的分享. more命令,功能类似 cat ,cat命令 ...
- Centos7.3下mysql5.7.18安装并修改初始密码的方法
Centos7.3下mysql5.7.18安装并修改初始密码的方法 原文链接:http://www.jb51.net/article/116032.htm 作者:Javen205 字体:[增加 减小] ...
- A/X家FPGA架构及资源评估
评估对比xilinx以及altera两家FPGA芯片逻辑资源. 首先要说明, 现今FPGA除了常规逻辑资源,还具有很多其他片内资源比如块RAM.DSP单元.高速串行收发器.PLL.ADC等等,用以应对 ...
- HTML5与css3权威指南(一)
doctype声明: <!DOCTYPE html> 字符编码: <meta charset="utf-8"> 不允许写结束标记:area,base,br. ...
- zookeeper 实现分布式锁
主要是依赖临时节点的特性.数据存储到内存中效率高:例如有web1 web2 两台应用服务器 db1 db2两台db服务器 db互为主备,web1 web2 分别去修改db1 .有限db2库里张三的年 ...
- Linux下使用skipfish扫描网站漏洞步骤
skipfish是谷歌开发的网站安全扫描工具. 下载地址:http://pan.baidu.com/s/1kTC66lL svn更新地址(一般链接不上,网速很慢): http://skipfish.g ...
- Python之Suds库调用WCF时复杂参数序列化
今天主要做自动化测技术支持工作,最近一直在做接口自动化这块,前些天在研究将web页面模拟http进行接口自动化,这周杭州那边想测试WCF服务,所以这两天一直在探索.遇到的第一个问题就是服务参数传参序列 ...
- UCS业务知识介绍
企业融合网关是集路由.交换.防火墙.VPN.IP PBX等功能于一体的综合性设备,满足企业语音.数据.网络安全等业务需求. UCS融合网关设备则是设备厂商在企业融合网关的基础上进一步提出的融合通信设备 ...
- Python基础篇(五)
bool用于判断布尔值的结果是True还是False >>> bool("a") True >>> bool(3) True >>& ...