题意

一个长为 \(l\) 的线段,每次等概率选择线段上两个点,共选出 \(n\) 条线段,求至少被 \(k\) 条线段覆盖的长度期望。

数据范围

\(1 \le k \le n \le 2000, 1 \le l \le 10^9\)

题解

坑爹的 \(\text E\) 浪费了我好多时间,导致没时间做。。

由于每个端点出现的概率互相独立,我们可以只考虑端点的相对顺序。

那么每相邻的两个点把线段分成了 \(2n + 1\) 个段,显然每段的期望长度是 \(\displaystyle \frac{l}{2n + 1}\) 。

然后我们只需要 \(dp\) 出期望有多少段被 \(k\) 个线段覆盖。那么给这 \(2n\) 个断点匹配,算合法方案了。

只要设 \(f_{i, j}\) 为前 \(i\) 个端点,还有 \(j\) 个左端点没有匹配上右端点的方案数,然后每次转移的时候,要么填左端点,要么填右端点(每个右端点可以任意匹配一个左端点)。

最后对于每个段单独算一下合法的匹配方案数即可,不要忘记除掉 \(f_{n, 0}\) 才是期望。

总结

对于均匀实数随机的期望问题,如果是分别且独立,通常可以考虑每一段的期望,然后直接当做离散模型进行 \(dp\) 即可。

代码

#include <bits/stdc++.h>

#define For(i, l, r) for (register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for (register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Rep(i, r) for (register int i = (0), i##end = (int)(r); i < i##end; ++i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << (x) << endl using namespace std; template<typename T> inline bool chkmin(T &a, T b) { return b < a ? a = b, 1 : 0; }
template<typename T> inline bool chkmax(T &a, T b) { return b > a ? a = b, 1 : 0; } inline int read() {
int x(0), sgn(1); char ch(getchar());
for (; !isdigit(ch); ch = getchar()) if (ch == '-') sgn = -1;
for (; isdigit(ch); ch = getchar()) x = (x * 10) + (ch ^ 48);
return x * sgn;
} void File() {
#ifdef zjp_shadow
freopen ("F.in", "r", stdin);
freopen ("F.out", "w", stdout);
#endif
} const int Mod = 998244353; inline int fpm(int x, int power) {
int res = 1;
for (; power; power >>= 1, x = 1ll * x * x % Mod)
if (power & 1) res = 1ll * res * x % Mod;
return res;
} const int N = 2e3 + 1e2; int f[N << 1][N], fac[N]; int main () { File(); int n = read(), k = read(), l = read(); f[0][0] = 1;
For (i, 0, n << 1) For (j, 0, min(n, i)) if (f[i][j]) {
(f[i + 1][j + 1] += f[i][j]) %= Mod;
if (j) f[i + 1][j - 1] = (f[i + 1][j - 1] + 1ll * f[i][j] * j) % Mod;
} int ans = 0; fac[0] = 1;
For (i, 1, n) fac[i] = 1ll * fac[i - 1] * i % Mod; For (i, 1, n << 1) For (j, k, min(n, i))
ans = (ans + 1ll * f[i][j] * f[(n << 1) - i][j] % Mod * fac[j]) % Mod; ans = 1ll * ans * l % Mod * fpm(2 * n + 1, Mod - 2) % Mod * fpm(f[n << 1][0], Mod - 2) % Mod;
printf ("%d\n", ans); return 0; }

CF1153 F. Serval and Bonus Problem(dp)的更多相关文章

  1. Codeforces Round #551 (Div. 2) F. Serval and Bonus Problem (DP/FFT)

    yyb大佬的博客 这线段期望好神啊... 还有O(nlogn)FFTO(nlogn)FFTO(nlogn)FFT的做法 Freopen大佬的博客 本蒟蒻只会O(n2)O(n^2)O(n2) CODE ...

  2. CF1153F Serval and Bonus Problem

    Serval and Bonus Problem 1.转化为l=1,最后乘上l 2.对于一个方案,就是随便选择一个点,选在合法区间内的概率 3.对于本质相同的所有方案考虑在一起,贡献就是合法区间个数/ ...

  3. CF1153F Serval and Bonus Problem FFT

    CF1153F Serval and Bonus Problem 官方的解法是\(O(n ^ 2)\)的,这里给出一个\(O(n \log n)\)的做法. 首先对于长度为\(l\)的线段,显然它的答 ...

  4. Codeforces 1153F Serval and Bonus Problem [积分,期望]

    Codeforces 思路 去他的DP,暴力积分多好-- 首先发现\(l\)没有用,所以不管它. 然后考虑期望的线性性,可以知道答案就是 \[ \int_0^1 \left[ \sum_{i=k}^n ...

  5. CF1153F Serval and Bonus Problem 【期望】

    题目链接:洛谷 作为一只沉迷数学多年的蒟蒻OIer,在推柿子和dp之间肯定要选推柿子的! 首先假设线段长度为1,最后答案乘上$l$即可. 对于$x$这个位置,被区间覆盖的概率是$2x(1-x)$(线段 ...

  6. @codeforces - 1153F@ Serval and Bonus Problem

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 从一条长度为 l 的线段中随机选择 n 条线段,共 2*n 个线 ...

  7. Codeforces1153F Serval and Bonus Problem 【组合数】

    题目分析: 我们思考正好被k个区间覆盖的情况,那么当前这个子段是不是把所有的点分成了两个部分,那么在两个部分之间相互连k条线,再对于剩下的分别连线就很好了?这个东西不难用组合数写出来. 然后我们要证明 ...

  8. UVA11069 - A Graph Problem(DP)

    UVA11069 - A Graph Problem(DP) 题目链接 题目大意:给你n个点.要你找出有多少子串符合要求.首先没有连续的数字,其次不能再往里面加入不论什么的数字而不违反第一条要求. 解 ...

  9. D. Easy Problem dp(有衔接关系的dp(类似于分类讨论) )

    D. Easy Problem dp(有衔接关系的dp(类似于分类讨论) ) 题意 给出一个串 给出删除每一个字符的代价问使得串里面没有hard的子序列需要付出的最小代价(子序列不连续也行) 思路 要 ...

随机推荐

  1. 【译】《C# Tips -- Write Better C#》

    [译]<C# Tips -- Write Better C#> <C# 奇淫巧技 -- 编写更优雅的 C#> 目录 介绍(Introduction) 第一部分:各种奇淫巧技(P ...

  2. SmartUpload工具包的中文乱码问题详解

    关于SmartUpload工具包的中文乱码问题,输出在服务端的中文显示是乱码,而英文数字,没有任何问题,我在网上看了其他人的问题和回答,让我觉得有道理,却又用不着,最后在多次试验中,终于找到了问题所在 ...

  3. Spring SpringMVC MyBatis配置笔记

    工程大致结构: project |-src |----pojo |--------Temp.java |----dao |--------TempDao.java |--------TempDao.x ...

  4. css——行内元素和块级元素的具体区别与行内块元素

    (学习笔记) 行内元素(inline)和块级元素(block)都是display属性的值.要知道行内元素和块级元素的区别,首先要了解他们的特性. 行内元素的特性:“行内”,顾名思义,在一行之内,所以相 ...

  5. Android View的重绘过程之Layout

    博客首页:http://www.cnblogs.com/kezhuang/p/ View绘制的三部曲,测量,布局,绘画现在我们分析布局部分测量部分在上篇文章中已经分析过了.不了解的可以去我的博客里找一 ...

  6. intellij idea 2017和Jprofiler 10的集成 报错问题

    本来想用Jprofiler来分析一下自己写的Java项目,以提高代码执行效率和自己的编码能力.结果,官网和网上很多帖子都写了点出session->IDE integrations->选择i ...

  7. coolite 获取新的页面链接到当前页面指定位置Panel的运用

    如下图所示,点击温州市文成县之前,右边是一片空白,点击后生成新的页面 html运用到了coolite的Panel控件 <Center> <ext:Panel ID="Pan ...

  8. Linux(CentOS7)下远程拷贝文件,scp命令

    一.Linux版本 二.scp命令 scp [参数] [原路径] [目标路径] scp -P 22022 /home/file.war root@192.168.253.172:/home/test ...

  9. Webdriver之API详解(2)

    前言:今天继续上一篇文章https://www.cnblogs.com/linuxchao/p/linuxchao-selenium-apione.html分享selenium' webdriver ...

  10. 最好用的jQuery-Ajax缓存插件

    AJAX-Cache    最好用的jQuery-Ajax缓存插件 介绍 AJAX-Cache是一款jQuery插件,基于localStorage/sessionStorage实现异步请求缓存功能,并 ...