[HNOI 2017]抛硬币
Description
两人抛硬币一人 \(a\) 次,一人 \(b\) 次。记正面朝上多的为胜。问抛出 \(a\) 次的人胜出的方案数。
\(1\le a,b\le 10^{15},b\le a\le b+10000,1\le k\le 9\)
Solution
比较难,不会写,代码都是抄题解的...题解链接
Code
//It is made by Awson on 2018.3.6
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const LL INF = ~0u>>1;
const LL mod5 = 1953125, mod2 = 512;
LL a, b, k, mi2, mi5, yzh, K;
LL f[6][mod5+1];
void print(LL x, LL rest) {if (rest == 0) return; print(x/10, rest-1); putchar(x%10+'0'); }
LL quick_pow(LL a, LL b, LL p) {
LL ans = 1;
while (b) {
if (b&1) ans = ans*a%p;
b >>= 1, a = a*a%p;
}
return ans;
}
void ex_gcd(LL a, LL b, LL &x, LL &y) {
if (b == 0) {x = 1, y = 0; return; }
ex_gcd(b, a%b, x, y);
LL t = x; x = y; y = t-a/b*y;
}
LL inv(LL a, LL b) {
LL x, y; ex_gcd(a, b, x, y);
return (x%b+b)%b;
}
LL mul(LL n, LL pi, LL pk) {
if (n == 0) return 1;
LL ans = f[pi][pk]%pk;
ans = quick_pow(ans, n/pk, pk);
ans = ans*f[pi][n%pk]%pk;
return ans*mul(n/pi, pi, pk)%pk;
}
LL C(LL n, LL m, LL pi, LL pk, bool flag) {
LL k = 0;
for (LL i = n; i; i = i/pi) k += i/pi;
for (LL i = m; i; i = i/pi) k -= i/pi;
for (LL i = n-m; i; i = i/pi) k-= i/pi;
if (pi == 2 && !flag) --k; if (k >= K) return 0;
LL a = mul(n, pi, pk), b = mul(m, pi, pk), c = mul(n-m, pi, pk);
LL ans = a*inv(b, pk)%pk*inv(c, pk)%pk*quick_pow(pi, k, pk)%pk;
if (pi == 5 && !flag) ans = ans*inv(2, pk)%pk;
return ans;
}
LL ex_lucas(LL n, LL m, bool flag) {return (C(n, m, 2, mi2, flag)*mi5%yzh*inv(mi5, mi2)%yzh+C(n, m, 5, mi5, flag)*mi2%yzh*inv(mi2, mi5)%yzh+yzh)%yzh; }
void work() {
K = k; mi2 = quick_pow(2, k, INF), mi5 = quick_pow(5, k, INF), yzh = mi2*mi5;
if (a == b) print((quick_pow(2, a*2-1, yzh)-ex_lucas(a*2, a, 0)+yzh)%yzh, k), puts("");
else {
LL ans = quick_pow(2, a+b-1, yzh);
for (LL i = (a+b)/2+1; i < a; i++) ans = (ans+ex_lucas(a+b, i, 1))%yzh;
if ((a+b)%2 == 0) ans = (ans+ex_lucas(a+b, (a+b)/2, 0))%yzh;
print(ans, k), puts("");
}
}
int main() {
f[2][0] = f[5][0] = f[2][1] = f[5][1] = 1;
for (LL i = 2; i <= mod2; i++) f[2][i] = (f[2][i-1])*(i%2 == 0 ? 1 : i)%mod2;
for (LL i = 2; i <= mod5; i++) f[5][i] = (f[5][i-1])*(i%5 == 0 ? 1 : i)%mod5;
while (~scanf("%lld%lld%lld", &a, &b, &k)) work(); return 0;
}
[HNOI 2017]抛硬币的更多相关文章
- 模拟抛硬币(C语言实现)
实现代码: #include<stdio.h> #include<stdlib.h> int heads() { ; } int main(int argc, char *ar ...
- bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]
4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...
- bzoj 4830: [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是 已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A ...
- [AH/HNOI2017]抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- bzoj4830 hnoi2017 抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- luogu P3726 [AH2017/HNOI2017]抛硬币
传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式 ...
- GMA Round 1 抛硬币
传送门 抛硬币 扔一个硬币,正面概率为0.6.扔这枚硬币666次,正面就得3分,反面就得1分,求总分的方差. 直接套公式$np(1-p)*(X-Y)^2=666*0.6*(1-0.6)*(3-1)^2 ...
- 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)
[BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...
- CSUOJ 1009 抛硬币
Description James得到了一堆有趣的硬币,于是决定用这些硬币跟朋友们玩个小游戏.在一个N行M列的表格上,每一个第i行第j列的格子上都放有一枚James的硬币,抛该硬币正面朝上的概率为Pi ...
随机推荐
- 2018上C语言程序设计(高级)博客作业样例
要求一(20分) 完成PTA中题目集名为<usth-C语言高级-第1次作业>中的所有题目. 要求二 PTA作业的总结(20分+30分) 将PTA第1次作业作业中以下2道题的解题思路按照规定 ...
- 听翁恺老师mooc笔记(15)--文件的输入与输出
<>重定向 如果使用标准的printf输出,有一个比较简便的方法,可以将程序的结果写入一个文件.使用<和>符号,将程序运行结果重定向到文件中去,具体使用到的代码如下: ./te ...
- Software Engineering-HW1
title: Software Engineering-HW1 date: 2017-09-13 15:41:13 tags: HW --- 阅读随笔 在<徐宥:掉进读书的兔子洞>里面, ...
- Beta冲刺 第六天
Beta冲刺 第六天 1. 昨天的困难 1.对于设计模式的应用不熟悉,所以在应用上出现了很大的困难. 2.SSH中数据库的管理是用HQL语句实现的,所以在多表查询时出现了很大的问题. 3.页面结构太凌 ...
- UI事务重叠引发的crash
在ios开发的世界里,通过动画来切换界面使我们早就习以为常的事情,但动画将一个原本同步执行的事务,变成一个异步事务,并由此引发了一系列的陷阱. 最近对公司产品的crashlytics报告进行了一些分析 ...
- STL常用整理
S T L Sting: << 判断拼音序 size length 字符串长度 str[n] 代表字符串中的一个字符 可用作左值 string::size_type 用于表示字符串长度计量 ...
- Struts2之Action的实现
对于Struts2框架来说,最重要的莫过于Action类的编写,类比于Servlet,Action类也是通过类的实例对象调用方法来处理请求的,Action类的实例对象是由Struts2的核心Filte ...
- Android接受验证码自动填入功能(源码+已实现+可用+版本兼容)
实际应用开发中,会经常用到短信验证的功能,这个时候如果再让用户就查看短信.然后再回到界面进行短信的填写,难免有多少有些不方便,作为开发者.本着用户至上的原则我们也应该来实现验证码的自动填写功能,还有一 ...
- OAuth2.0学习(1-3)OAuth2.0的参与者和流程
OAuth(开放授权)是一个开放标准.允许第三方网站在用户授权的前提下访问在用户在服务商那里存储的各种信息.而这种授权无需将用户提供用户名和密码提供给该第三方网站. OAuth允许用户提供一个令牌给第 ...
- 访问器属性:setter()函数和getter()函数
1.干嘛用的? getter()函数:返回有效的值 setter()函数:调用它并传入数据,这个函数决定如何处理数据 2.具备哪些属性?如何定义? configurable(默认为true),enum ...