Description

题库链接

两人抛硬币一人 \(a\) 次,一人 \(b\) 次。记正面朝上多的为胜。问抛出 \(a\) 次的人胜出的方案数。

\(1\le a,b\le 10^{15},b\le a\le b+10000,1\le k\le 9\)

Solution

比较难,不会写,代码都是抄题解的...题解链接

Code

//It is made by Awson on 2018.3.6
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const LL INF = ~0u>>1;
const LL mod5 = 1953125, mod2 = 512; LL a, b, k, mi2, mi5, yzh, K;
LL f[6][mod5+1]; void print(LL x, LL rest) {if (rest == 0) return; print(x/10, rest-1); putchar(x%10+'0'); }
LL quick_pow(LL a, LL b, LL p) {
LL ans = 1;
while (b) {
if (b&1) ans = ans*a%p;
b >>= 1, a = a*a%p;
}
return ans;
}
void ex_gcd(LL a, LL b, LL &x, LL &y) {
if (b == 0) {x = 1, y = 0; return; }
ex_gcd(b, a%b, x, y);
LL t = x; x = y; y = t-a/b*y;
}
LL inv(LL a, LL b) {
LL x, y; ex_gcd(a, b, x, y);
return (x%b+b)%b;
}
LL mul(LL n, LL pi, LL pk) {
if (n == 0) return 1;
LL ans = f[pi][pk]%pk;
ans = quick_pow(ans, n/pk, pk);
ans = ans*f[pi][n%pk]%pk;
return ans*mul(n/pi, pi, pk)%pk;
}
LL C(LL n, LL m, LL pi, LL pk, bool flag) {
LL k = 0;
for (LL i = n; i; i = i/pi) k += i/pi;
for (LL i = m; i; i = i/pi) k -= i/pi;
for (LL i = n-m; i; i = i/pi) k-= i/pi;
if (pi == 2 && !flag) --k; if (k >= K) return 0;
LL a = mul(n, pi, pk), b = mul(m, pi, pk), c = mul(n-m, pi, pk);
LL ans = a*inv(b, pk)%pk*inv(c, pk)%pk*quick_pow(pi, k, pk)%pk;
if (pi == 5 && !flag) ans = ans*inv(2, pk)%pk;
return ans;
}
LL ex_lucas(LL n, LL m, bool flag) {return (C(n, m, 2, mi2, flag)*mi5%yzh*inv(mi5, mi2)%yzh+C(n, m, 5, mi5, flag)*mi2%yzh*inv(mi2, mi5)%yzh+yzh)%yzh; }
void work() {
K = k; mi2 = quick_pow(2, k, INF), mi5 = quick_pow(5, k, INF), yzh = mi2*mi5;
if (a == b) print((quick_pow(2, a*2-1, yzh)-ex_lucas(a*2, a, 0)+yzh)%yzh, k), puts("");
else {
LL ans = quick_pow(2, a+b-1, yzh);
for (LL i = (a+b)/2+1; i < a; i++) ans = (ans+ex_lucas(a+b, i, 1))%yzh;
if ((a+b)%2 == 0) ans = (ans+ex_lucas(a+b, (a+b)/2, 0))%yzh;
print(ans, k), puts("");
}
}
int main() {
f[2][0] = f[5][0] = f[2][1] = f[5][1] = 1;
for (LL i = 2; i <= mod2; i++) f[2][i] = (f[2][i-1])*(i%2 == 0 ? 1 : i)%mod2;
for (LL i = 2; i <= mod5; i++) f[5][i] = (f[5][i-1])*(i%5 == 0 ? 1 : i)%mod5;
while (~scanf("%lld%lld%lld", &a, &b, &k)) work(); return 0;
}

[HNOI 2017]抛硬币的更多相关文章

  1. 模拟抛硬币(C语言实现)

    实现代码: #include<stdio.h> #include<stdlib.h> int heads() { ; } int main(int argc, char *ar ...

  2. bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]

    4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...

  3. bzoj 4830: [Hnoi2017]抛硬币

    Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是 已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A ...

  4. [AH/HNOI2017]抛硬币

    题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...

  5. bzoj4830 hnoi2017 抛硬币

    题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...

  6. luogu P3726 [AH2017/HNOI2017]抛硬币

    传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式 ...

  7. GMA Round 1 抛硬币

    传送门 抛硬币 扔一个硬币,正面概率为0.6.扔这枚硬币666次,正面就得3分,反面就得1分,求总分的方差. 直接套公式$np(1-p)*(X-Y)^2=666*0.6*(1-0.6)*(3-1)^2 ...

  8. 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)

    [BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...

  9. CSUOJ 1009 抛硬币

    Description James得到了一堆有趣的硬币,于是决定用这些硬币跟朋友们玩个小游戏.在一个N行M列的表格上,每一个第i行第j列的格子上都放有一枚James的硬币,抛该硬币正面朝上的概率为Pi ...

随机推荐

  1. VS2017调试器无法附加到IIS进程(w3wp.exe)

    问题描述: 当使用VS2017-> 调试->附加到进程来调试IIS进程(w3wp.exe)时,报错"无法附加到进程,已附加了一个调试器" 为了解决这个问题花了不少时间, ...

  2. 听翁恺老师mooc笔记(9)--枚举

    枚举类型的定义 用符号而不是具体的数字来表示程序中的数字,这么表示的好处是可读性,当别人看你的程序,看到的是单词,很容易理解这些数字背后的含义,那么用什么符号来表示名字哪?需要const int常量的 ...

  3. 201621123043 《Java程序设计》第11周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 1. 源代码阅读:多线程程序BounceThread 1.1 BallR ...

  4. 从PRISM开始学WPF(三)Prism-Region?

    从PRISM开始学WPF(一)WPF? 从PRISM开始学WPF(二)Prism? 从PRISM开始学WPF(三)Prism-Region? 从PRISM开始学WPF(四)Prism-Module? ...

  5. Mego(07) - 关系配置

    这个是本框架的重要功能,该关系就是指对象中的复杂对象或集合属性,该关系与EF中的关系是有区别的.EF中强调关系的成对出现,这是由于数据库关系的思想决定的.然而Mego更接近与对象化逻辑,我们只关心当前 ...

  6. [phpvia/via] PHP多进程服务器模型中的惊群

    [ 概述 ] 典型的多进程服务器模型是这样的,主进程绑定ip,监听port,fork几个子进程,子进程安装信号处理器,随后轮询资源描述符检查是否可读可写: 子进程的轮询又涉及到 IO复用,accept ...

  7. HTTP协议扫盲(三)HTTP协议的请求头列表和分类描述

    一.请求报头和响应报头列表 1.Requests 头列表 Header 解释 示例 Accept 指定客户端能够接收的内容类型 Accept: text/plain, text/html Accept ...

  8. Spring Security 入门(1-3-5)Spring Security - remember me!

    Remember-Me 功能 概述 Remember-Me 是指网站能够在 Session 之间记住登录用户的身份,具体来说就是我成功认证一次之后在一定的时间内我可以不用再输入用户名和密码进行登录了, ...

  9. java中的引用类型的对象存放在哪里

    根据上下文来确定.比如void func(){    Object obj = new Object();//这个obj在函数的栈里.}class Test{   private Object obj ...

  10. centos7搭建nexus maven私服(二)

    本文主要补充两个主题: 1.手动更新索引 2.通过maven客户端发布本地jar包到nexus 先说第一个主题: 由于maven中央仓库汇集了全世界绝大多数的组件,所以它的索引库非常庞大,在我们右击仓 ...