[HAOI 2011]Problem b
Description
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
Sample Input
2 5 1 5 1
1 5 1 5 2
Sample Output
3
HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
题解
记 $f(x, y)$ 为满足 $gcd(i,j)=k$ 的数对 $(i,j)~~(i\in[1,x],j\in[1,y])$ 的个数。
由容斥原理,答案就是 $ans=f(b,d)-f((a-1),d)-f(b,(c-1))+f((a-1),(c-1))$ 。
我们现在考虑如何求 $f(x,y)$ 。
我们按照以往的套路,将 $k$ 提出,显然 $$f(a,b)=\sum_{i=1}^{\left\lfloor\frac{a}{k} \right\rfloor}\sum_{j=1}^{\left\lfloor\frac{b}{k} \right\rfloor}[gcd(i,j)=1]$$
由公式 $\sum_{d\mid n} \mu(d)=[n=1]$ ,我们得到
$$\Rightarrow \sum_{i=1}^{\left\lfloor\frac{a}{k} \right\rfloor}\sum_{j=1}^{\left\lfloor\frac{b}{k} \right\rfloor}\sum_{d\mid gcd(i,j)}\mu(d)$$
我们将 $\mu$ 提前
\begin{aligned} &\Rightarrow\sum_{d=1}^{min\left\{\left\lfloor\frac{a}{k} \right\rfloor,\left\lfloor\frac{b}{k} \right\rfloor\right\}}\mu(d)\sum_{i=1,d\mid i}^{\left\lfloor\frac{a}{k} \right\rfloor}\sum_{j=1,d\mid j}^{\left\lfloor\frac{b}{k}\right\rfloor}1\\&\Rightarrow\sum_{d=1}^{min\left\{\left\lfloor\frac{a}{k} \right\rfloor,\left\lfloor\frac{b}{k} \right\rfloor\right\}}\mu(d)\cdot\left\lfloor\frac{\left\lfloor\frac{a}{k}\right\rfloor}{d}\right\rfloor\cdot\left\lfloor\frac{\left\lfloor\frac{b}{k}\right\rfloor}{d}\right\rfloor\end{aligned}
得到这个式子还有第二个方Fa♂,这里也提一下。
令 $F(d)$ 为 $d\mid gcd(i,j)$ 的数对 $(i,j)$ 个数, $f(d)$ 为 $d=gcd(i,j)$ 的数对 $(i,j)$ 个数。
由题 $$F(k)=\sum_{d=1}^{min\left\{\left\lfloor\frac{a}{k}\right\rfloor,\left\lfloor\frac{b}{k} \right\rfloor\right\}}f(kd)$$
由莫比乌斯反演定理 $F(n)=\sum_{n\mid d} f(d)\Rightarrow f(n)=\sum_{n\mid d} \mu(\frac{d}{n})F(d)$
\begin{aligned}\Rightarrow f(k)&=\sum_{d=1}^{min\left\{\left\lfloor\frac{a}{k}\right\rfloor,\left\lfloor\frac{b}{k}\right\rfloor\right\}}\mu(d)F(kd)\\&=\sum_{d=1}^{min\left\{\left\lfloor\frac{a}{k} \right\rfloor,\left\lfloor\frac{b}{k}\right\rfloor\right\}}\mu(d)\cdot\left\lfloor\frac{a}{kd}\right\rfloor\cdot\left\lfloor\frac{b}{kd}\right\rfloor\end{aligned}
那么我们现在只需要 $O(n)$ 的枚举 $d$ 就可以了,但对于多组询问,这个复杂度还是吃不消的。
我们考虑在计算的时候 $\left\lfloor\frac{\left\lfloor\frac{n}{k}\right\rfloor}{d}\right\rfloor$ 是一个分段的,有较长的一段区间内的数是相等的。可以证明这段区间的长度是 $\sqrt{n}$ 的。
证明:
1.当 $1\leq d < \sqrt n$ 时, $d$ 就只有 $\sqrt n$ 个, $\left\lfloor{n \over d}\right\rfloor$ 最多有 $\sqrt n$ 个。
2.当 $\sqrt n \leq d \leq n$ 时,由于 $\left\lfloor{n \over d}\right\rfloor$ 小于 $\sqrt n$ ,所以 $\left\lfloor{n \over d}\right\rfloor$ 最多有 $\sqrt n$ 个。
证毕。
显然对于一段区间内 $\left\lfloor\frac{\left\lfloor\frac{a}{k}\right\rfloor}{d}\right\rfloor$ 和 $\left\lfloor\frac{\left\lfloor\frac{b}{k}\right\rfloor}{d}\right\rfloor$ 相同的数我们可以直接处理 $\mu$ 的前缀,直接求即可。而相同值的区间的右端点为 $\left\lfloor \frac{n}{\left\lfloor\frac{n}{d} \right\rfloor} \right\rfloor$ 。
证明:
对于 $n$ 来说,找到最大的 $j$ 满足 $$\left\lfloor\frac{n}{i}\right\rfloor \leq\left\lfloor\frac{n}{j}\right\rfloor$$
化简一下得到 $$j\leq \left\lfloor\frac{n}{\left\lfloor\frac{n}{i}\right\rfloor}\right\rfloor$$
那么在计算时在分别关于 $a, b$ 的表达式中取一个较小值即可。时间复杂度 $O(n\sqrt n)$ 。
//It is made by Awson on 2018.1.19
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
using namespace std;
const int N = ;
const int INF = ~0u>>;
void read(int &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(LL x) {
if (x > ) write(x/);
putchar(x%+);
} LL mu[N+]; int a, b, c, d, k;
void get_mu() {
int isprime[N+], prime[N+], tot = ;
memset(isprime, , sizeof(isprime)); isprime[] = , mu[] = ;
for (int i = ; i <= N; i++) {
if (isprime[i]) mu[i] = -, prime[++tot] = i;
for (int j = ; j <= tot && i*prime[j] <= N; j++)
if (!(i%prime[j])) {isprime[i*prime[j]] = , mu[i*prime[j]] = ; break; }
else isprime[i*prime[j]] = , mu[i*prime[j]] = -mu[i];
mu[i] += mu[i-];
}
}
LL cal(int x, int y) {
if (x > y) Swap(x, y); LL ans = ;
for (int i = , last; i <= x; i = last+) {
last = Min(x/(x/i), y/(y/i));
ans += (LL)(mu[last]-mu[i-])*(x/i)*(y/i);
}
return ans;
}
void work() {
read(a), read(b), read(c), read(d), read(k);
writeln(cal(b/k, d/k)-cal(b/k, (c-)/k)-cal((a-)/k, d/k)+cal((a-)/k, (c-)/k));
}
int main() {
int t; read(t); get_mu();
while (t--) work();
return ;
}
[HAOI 2011]Problem b的更多相关文章
- [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)
[BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...
- [HAOI 2011] Problem A
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2298 [算法] 考虑用总人数 - 最多人说真话 显然 , 对于每个人 , 如果他说的 ...
- [HAOI 2011]Problem c
Description 给n个人安排座位,先给每个人一个1~n的编号,设第i个人的编号为ai(不同人的编号可以相同),接着从第一个人开始,大家依次入座,第i个人来了以后尝试坐到ai,如果ai被占据了, ...
- [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)
[BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...
- 【BZOJ 2301】【HAOI 2011】Problem b
今天才知道莫比乌斯反演还可以这样:$$F(n)=\sum_{n|d}f(d) \Rightarrow f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$$我好弱,,,对于$$F( ...
- 数学(莫比乌斯反演):HAOI 2011 问题B
题目描述: 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入格式: 第一行一个整数n,接下来n ...
- [HAOI 2011]向量
Description 题库链接 给你一对数 \(a,b\) ,你可以任意使用 \((a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b ...
- HDU 2011 多项式求和
http://acm.hdu.edu.cn/showproblem.php?pid=2011 Problem Description 多项式的描述如下:1 - 1/2 + 1/3 - 1/4 + 1/ ...
- Warsaw U Contest Petrozavo dsk Summer 2011 Training Camp, Monday, September 5, 2011
Warsaw U Contest Petrozavo dsk Summer 2011 Training Camp, Monday, September 5, 2011 Problem A.Chocol ...
随机推荐
- Flume日志采集系统
1.简介 Flume是Cloudera提供的一个高可用.高可靠.分布式的海量日志采集.聚合和传输的系统. Flume支持在日志系统中定制各类数据发送方用于收集数据,同时Flume提供对数据进行简单的处 ...
- Mybatis学习笔记二
本篇内容,紧接上一篇内容Mybatis学习笔记一 输入映射和输出映射 传递简单类型和pojo类型上篇已介绍过,下面介绍一下包装类型. 传递pojo包装对象 开发中通过可以使用pojo传递查询条件.查询 ...
- chrome浏览器访问google插件
访问google其实很多时候都是为了搜索资料,本文分享下,chrome浏览器访问google插件 下载地址:http://www.ggfwzs.com/ 1,下载完成后,解压: 如下: 2,打开谷歌浏 ...
- Beta 第一天
一.今日任务 重新熟悉整体项目 对整个项目在未来的beta冲刺中进程有一个合理的规划 由于我们送出的是一个负责前端的成员,引入的也是一个负责前端工作的女生,(女生做起美工比起男生更加得心应手吧)所以我 ...
- JAVA反射机制基础概念
反射机制:所谓的反射机制就是java语言在运行时拥有一项自观的能力.通过这种能力可以彻底的了解自身的情况为下一步的动作做准备.下面具体介绍一下java的反射机制.这里你将颠覆原来对java的理解. J ...
- decltype操作符
关于decltype操作符的说明: 1.在C++中,decltype作为操作符,用于查询表达式的数据类型.decltype在C++11标准制定时引入,主要是为泛型编程而设计,以解决泛型编程中,由于有些 ...
- 浅谈 ThreadLocal
有时,你希望将每个线程数据(如用户ID)与线程关联起来.尽管可以使用局部变量来完成此任务,但只能在本地变量存在时才这样做.也可以使用一个实例属性来保存这些数据,但是这样就必须处理线程同步问题.幸运的是 ...
- 关于TomCat上传文件中文名乱码的问题
最近在学习TomCat文件上传这一部分,由于文件上传必须要三个条件: 1.表单提交方式必须为Post 2.表单中需要有<input type="file">元素,还需要 ...
- bootstrap的ajax提交
一般后台界面都用bootstrap框架,这是一个css框架,里面封装了ajax方法,只需要在样式中指定就行,根本自己不用写 <td> <eq name='item.status' v ...
- 微信接口(一)创建菜单&自动回复
刚划拉完微信.做一个笔记这里的数据是写死的,还有一份是通过查询数据库进行自动回复,自定义菜单设置的.不过因为使用到数据库,最好在网站后台吧微信平台开发集成进去.所以代码较多就先不放了.有问题的地方请留 ...