简介

在测试算法的时候,或者某些算法需要使用随机数,本文介绍如何使用OpenCV的随机数相关功能。

主要内容:

1. cv::RNG类 —— random number generator

2. cv::randu —— 填充均匀分布随机数

3. cv::randn —— 填充高斯分布随机数


cv::RNG

RNG是OpenCV用来产生随机数的类,他可以产生标量随机数,也可以使用随机数填充Mat对象。当前它只支持均匀分布和高斯分布的随机数。

用实例展示如何产生标量随机数和填充Mat对象。

例1,产生标量随机数。

#include <iostream>
#include <opencv2/opencv.hpp>
int main(){
    cv::RNG rnger(cv::getTickCount());
    for (int i = 0; i < 10; i++){
        std::cout << "int    uniform  random number : " << rnger.uniform(0, 10) << std::endl;
        std::cout << "float  uniform  random number : " << rnger.uniform(0.f, 1.f) << std::endl;
        std::cout << "double uniform  random number : " << rnger.uniform(0., 1.) << std::endl;
        std::cout << "double gaussian random number : " << rnger.gaussian(1.) << std::endl;
        std::cout << std::endl;
    }
    return 0;
}

例2,用随机数填充矩阵

#include <iostream>
#include <opencv2/opencv.hpp>
int main(){
    cv::RNG rnger(cv::getTickCount());
    int width = 1280, height = 720;
    cv::Mat data;
    cv::Scalar mm, ss;
    // CV_8UC3 uniform distribution
    data.create(height, width, CV_8UC3);
    rnger.fill(data, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(256));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_8UC1 uniform distribution
    data.create(height, width, CV_8UC1);
    rnger.fill(data, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(256));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_32FC3 uniform distribution
    data.create(height, width, CV_32FC3);
    rnger.fill(data, cv::RNG::UNIFORM, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_32FC1 uniform distribution
    data.create(height, width, CV_32FC1);
    rnger.fill(data, cv::RNG::UNIFORM, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_32FC3 normal distribution
    data.create(height, width, CV_32FC3);
    rnger.fill(data, cv::RNG::NORMAL, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::meanStdDev(data, mm, ss);
    std::cout << mm << ", " << ss << std::endl;

    // CV_32FC1 normal distribution
    data.create(height, width, CV_32FC1);
    rnger.fill(data, cv::RNG::NORMAL, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::meanStdDev(data, mm, ss);
    std::cout << mm << ", " << ss << std::endl;

    return 0;
}

void RNG::fill(InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange=false );

mat :待填充的矩阵,他的内存必须已经分配!

distType :随机数的分布(cv::RNG::UNIFORM或者 cv::RNG::NORMAL)!

a :分布的第一个参数,如果distType=cv::RNG::UNIFORM,那a是均匀分布的下限。如果distType=cv::RNG::NORMAL 那么a 就是分布的均值。

b :分布的第二个参数,如果distType=cv::RNG::UNIFORM,那b 是均匀分布的上限(但不包括b)。如果distType=cv::RNG::NORMAL 那么b 就是分布的标准差。

randu,randn

randnrandu 可以用来替代 fill函数,唯一的区别是这两个函数使用默认的随机状态(state),而在使用fill的时候,我们用的是cv::getTickCount()来初始化随机状态的。

实例3,使用randu和randn

#include <iostream>
#include <opencv2/opencv.hpp>

int main(){
    int width = 1280, height = 720;
    cv::Mat data;
    cv::Scalar mm, ss;

    // CV_8UC3 uniform distribution
    data.create(height, width, CV_8UC3);
    cv::randu(data, cv::Scalar::all(0), cv::Scalar::all(256));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_8UC1 uniform distribution
    data.create(height, width, CV_8UC1);
    cv::randu(data, cv::Scalar::all(0), cv::Scalar::all(256));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_32FC3 uniform distribution
    data.create(height, width, CV_32FC3);
    cv::randu(data, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_32FC1 uniform distribution
    data.create(height, width, CV_32FC1);
    cv::randu(data, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_32FC3 normal distribution
    data.create(height, width, CV_32FC3);
    cv::randn(data, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::meanStdDev(data, mm, ss);
    std::cout << mm << ", " << ss << std::endl;

    // CV_32FC1 normal distribution
    data.create(height, width, CV_32FC1);
    cv::randn(data, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::meanStdDev(data, mm, ss);
    std::cout << mm << ", " << ss << std::endl;

    return 0;
}

OpenCV 2.x/3.x 随机初始化矩阵的更多相关文章

  1. [LeetCode] Random Flip Matrix 随机翻转矩阵

    You are given the number of rows n_rows and number of columns n_cols of a 2D binary matrix where all ...

  2. ML(5)——神经网络3(随机初始化与梯度检验)

    随机初始化 在线性回归和逻辑回归中,使用梯度下降法之前,将θ设置为0向量,有时会习惯性的将神经网络中的权重全部初始化为0,然而这在神经网络中并不适用. 以简单的三层神经网络为例,将全部权重都设置为0, ...

  3. Java实现 LeetCode 519 随机翻转矩阵

    519. 随机翻转矩阵 题中给出一个 n 行 n 列的二维矩阵 (n_rows,n_cols),且所有值被初始化为 0.要求编写一个 flip 函数,均匀随机的将矩阵中的 0 变为 1,并返回该值的位 ...

  4. TensorFlow中权重的随机初始化

    一开始没看懂stddev是什么参数,找了一下,在tensorflow/python/ops里有random_ops,其中是这么写的: def random_normal(shape, mean=0.0 ...

  5. [Swift]LeetCode519. 随机翻转矩阵 | Random Flip Matrix

    You are given the number of rows n_rows and number of columns n_cols of a 2D binary matrix where all ...

  6. OpenCV仿射变换+投射变换+单应性矩阵

    本来想用单应性求解小规模运动的物体的位移,但是后来发现即使是很微小的位移也会带来超级大的误差甚至错误求解,看起来这个方法各种行不通,还是要匹配知道深度了以后才能从三维仿射变换来入手了,纠结~ esti ...

  7. 吴恩达机器学习笔记47-K均值算法的优化目标、随机初始化与聚类数量的选择(Optimization Objective & Random Initialization & Choosing the Number of Clusters of K-Means Algorithm)

    一.K均值算法的优化目标 K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K-均值的代价函数(又称畸变函数 Distortion function)为: 其中

  8. 阿基米德项目ALS矩阵分解算法应用案例

    转自:https://github.com/ceys/jdml/wiki/ALS 阿基米德项目ALS矩阵分解算法应用案例 编写人:ceys/youyis 最后更新时间:2014.5.12 一.算法描述 ...

  9. 矩阵补全(Matrix Completion)和缺失值预处理

    目录 1 常用的缺失值预处理方式 1.1 不处理 1.2 剔除 1.3 填充 2 利用矩阵分解补全缺失值 3 矩阵分解补全缺失值代码实现 4 通过矩阵分解补全矩阵的一些小问题 References 矩 ...

随机推荐

  1. Spring学习之AOP与事务

      一.概述 在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续, ...

  2. PIL绘图

    # coding:utf-8 # PIL的ImageDraw 提供了一系列绘图方法,让我们可以直接绘图.比如要生成字母验证码图片 from PIL import Image, ImageDraw, I ...

  3. Typescript学习

    一 什么是Typescript 简单的说,TypeScript 是 JavaScript 的一个超集,主要提供了类型系统和对 ES6 的支持,它由 Microsoft 开发,代码开源于 GitHub  ...

  4. Map 接口简明

    Map 接口并没有继承Collection接口 HashMap : 哈希表数据结构,是线程不同步的,快速.允许存储 null 键,null 值.替代了 Hashtable. LinkedHashMap ...

  5. 拥抱开源,Office 365开发迎来新时代

    前言 作为全球最大的开放源代码托管平台,Github在上周迎来了它的十岁生日.自从2008年正式上线以来,Github上面汇聚了数以千万计的开发人员和各种项目,它几乎成为了开源的代名词和风向标,各大软 ...

  6. webstorm git团队开发技巧总结(一)

    ---恢复内容开始--- 1.git查看和修改用户名,邮箱 用户名和邮箱地址是本地git客户端的一个变量,不随git库而改变.每次commit都会用用户名和邮箱记录. (1)查看用户名和地址 git ...

  7. [HNOI 2003]消防局的设立

    Description 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来 连接这些基地,并且每两个基地都能够通过道路到达,所以所有的基地形成 ...

  8. [HNOI 2009]最小圈

    Description 考虑带权的有向图$G=(V,E)$以及$w:E\rightarrow R$,每条边$e=(i,j)(i\neq j,i\in V,j\in V)$的权值定义为$w_{i,j}$ ...

  9. 【BZOJ3531】【SDOI2014】旅行

    题目传送门 题目大意:给定一棵无根树,每个节点有自己的类别和权值,现在给定两个类别相同的点,叫你求这2点路径上同类别节点的权值和/最大权值. 节点类别与权值会改变. 解题思路:考虑对每一个类别开一棵线 ...

  10. bzoj3224Tyvj 1728 普通平衡树 treap

    3224: Tyvj 1728 普通平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 17706  Solved: 7764[Submit][St ...