简介

在测试算法的时候,或者某些算法需要使用随机数,本文介绍如何使用OpenCV的随机数相关功能。

主要内容:

1. cv::RNG类 —— random number generator

2. cv::randu —— 填充均匀分布随机数

3. cv::randn —— 填充高斯分布随机数


cv::RNG

RNG是OpenCV用来产生随机数的类,他可以产生标量随机数,也可以使用随机数填充Mat对象。当前它只支持均匀分布和高斯分布的随机数。

用实例展示如何产生标量随机数和填充Mat对象。

例1,产生标量随机数。

#include <iostream>
#include <opencv2/opencv.hpp>
int main(){
    cv::RNG rnger(cv::getTickCount());
    for (int i = 0; i < 10; i++){
        std::cout << "int    uniform  random number : " << rnger.uniform(0, 10) << std::endl;
        std::cout << "float  uniform  random number : " << rnger.uniform(0.f, 1.f) << std::endl;
        std::cout << "double uniform  random number : " << rnger.uniform(0., 1.) << std::endl;
        std::cout << "double gaussian random number : " << rnger.gaussian(1.) << std::endl;
        std::cout << std::endl;
    }
    return 0;
}

例2,用随机数填充矩阵

#include <iostream>
#include <opencv2/opencv.hpp>
int main(){
    cv::RNG rnger(cv::getTickCount());
    int width = 1280, height = 720;
    cv::Mat data;
    cv::Scalar mm, ss;
    // CV_8UC3 uniform distribution
    data.create(height, width, CV_8UC3);
    rnger.fill(data, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(256));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_8UC1 uniform distribution
    data.create(height, width, CV_8UC1);
    rnger.fill(data, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(256));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_32FC3 uniform distribution
    data.create(height, width, CV_32FC3);
    rnger.fill(data, cv::RNG::UNIFORM, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_32FC1 uniform distribution
    data.create(height, width, CV_32FC1);
    rnger.fill(data, cv::RNG::UNIFORM, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_32FC3 normal distribution
    data.create(height, width, CV_32FC3);
    rnger.fill(data, cv::RNG::NORMAL, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::meanStdDev(data, mm, ss);
    std::cout << mm << ", " << ss << std::endl;

    // CV_32FC1 normal distribution
    data.create(height, width, CV_32FC1);
    rnger.fill(data, cv::RNG::NORMAL, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::meanStdDev(data, mm, ss);
    std::cout << mm << ", " << ss << std::endl;

    return 0;
}

void RNG::fill(InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange=false );

mat :待填充的矩阵,他的内存必须已经分配!

distType :随机数的分布(cv::RNG::UNIFORM或者 cv::RNG::NORMAL)!

a :分布的第一个参数,如果distType=cv::RNG::UNIFORM,那a是均匀分布的下限。如果distType=cv::RNG::NORMAL 那么a 就是分布的均值。

b :分布的第二个参数,如果distType=cv::RNG::UNIFORM,那b 是均匀分布的上限(但不包括b)。如果distType=cv::RNG::NORMAL 那么b 就是分布的标准差。

randu,randn

randnrandu 可以用来替代 fill函数,唯一的区别是这两个函数使用默认的随机状态(state),而在使用fill的时候,我们用的是cv::getTickCount()来初始化随机状态的。

实例3,使用randu和randn

#include <iostream>
#include <opencv2/opencv.hpp>

int main(){
    int width = 1280, height = 720;
    cv::Mat data;
    cv::Scalar mm, ss;

    // CV_8UC3 uniform distribution
    data.create(height, width, CV_8UC3);
    cv::randu(data, cv::Scalar::all(0), cv::Scalar::all(256));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_8UC1 uniform distribution
    data.create(height, width, CV_8UC1);
    cv::randu(data, cv::Scalar::all(0), cv::Scalar::all(256));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_32FC3 uniform distribution
    data.create(height, width, CV_32FC3);
    cv::randu(data, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_32FC1 uniform distribution
    data.create(height, width, CV_32FC1);
    cv::randu(data, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::imshow("data", data);
    cv::waitKey();

    // CV_32FC3 normal distribution
    data.create(height, width, CV_32FC3);
    cv::randn(data, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::meanStdDev(data, mm, ss);
    std::cout << mm << ", " << ss << std::endl;

    // CV_32FC1 normal distribution
    data.create(height, width, CV_32FC1);
    cv::randn(data, cv::Scalar::all(0.), cv::Scalar::all(1.));
    cv::meanStdDev(data, mm, ss);
    std::cout << mm << ", " << ss << std::endl;

    return 0;
}

OpenCV 2.x/3.x 随机初始化矩阵的更多相关文章

  1. [LeetCode] Random Flip Matrix 随机翻转矩阵

    You are given the number of rows n_rows and number of columns n_cols of a 2D binary matrix where all ...

  2. ML(5)——神经网络3(随机初始化与梯度检验)

    随机初始化 在线性回归和逻辑回归中,使用梯度下降法之前,将θ设置为0向量,有时会习惯性的将神经网络中的权重全部初始化为0,然而这在神经网络中并不适用. 以简单的三层神经网络为例,将全部权重都设置为0, ...

  3. Java实现 LeetCode 519 随机翻转矩阵

    519. 随机翻转矩阵 题中给出一个 n 行 n 列的二维矩阵 (n_rows,n_cols),且所有值被初始化为 0.要求编写一个 flip 函数,均匀随机的将矩阵中的 0 变为 1,并返回该值的位 ...

  4. TensorFlow中权重的随机初始化

    一开始没看懂stddev是什么参数,找了一下,在tensorflow/python/ops里有random_ops,其中是这么写的: def random_normal(shape, mean=0.0 ...

  5. [Swift]LeetCode519. 随机翻转矩阵 | Random Flip Matrix

    You are given the number of rows n_rows and number of columns n_cols of a 2D binary matrix where all ...

  6. OpenCV仿射变换+投射变换+单应性矩阵

    本来想用单应性求解小规模运动的物体的位移,但是后来发现即使是很微小的位移也会带来超级大的误差甚至错误求解,看起来这个方法各种行不通,还是要匹配知道深度了以后才能从三维仿射变换来入手了,纠结~ esti ...

  7. 吴恩达机器学习笔记47-K均值算法的优化目标、随机初始化与聚类数量的选择(Optimization Objective & Random Initialization & Choosing the Number of Clusters of K-Means Algorithm)

    一.K均值算法的优化目标 K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K-均值的代价函数(又称畸变函数 Distortion function)为: 其中

  8. 阿基米德项目ALS矩阵分解算法应用案例

    转自:https://github.com/ceys/jdml/wiki/ALS 阿基米德项目ALS矩阵分解算法应用案例 编写人:ceys/youyis 最后更新时间:2014.5.12 一.算法描述 ...

  9. 矩阵补全(Matrix Completion)和缺失值预处理

    目录 1 常用的缺失值预处理方式 1.1 不处理 1.2 剔除 1.3 填充 2 利用矩阵分解补全缺失值 3 矩阵分解补全缺失值代码实现 4 通过矩阵分解补全矩阵的一些小问题 References 矩 ...

随机推荐

  1. Java 微服务框架选型(Dubbo 和 Spring Cloud?)

    微服务(Microservices)是一种架构风格,一个大型复杂软件应用由一个或多个微服务组成.系统中的各个微服务可被独立部署,各个微服务之间是松耦合的.每个微服务仅关注于完成一件任务并很好地完成该任 ...

  2. asp.net core 三 Nuget包管理

        参考连接:http://www.cnblogs.com/netcore2/p/7412891.html     这里的说明,基本就是学习了别人的文章,自己做了个备份     asp.net c ...

  3. Canvas绘制五角星

    from tkinter import * import math as m root = Tk() w = Canvas(root, width=200, height=100, backgroun ...

  4. hadoop in hue的搭建(基于cdh版本)

    首先官网下载tar包 http://archive.cloudera.com/cdh5/cdh/5/hue-3.9.0-cdh5.5.4.tar.gz 在安装hue之前,还需要安装各种依赖包,首先要检 ...

  5. eclipse下如何使用Hibernate反转工程生与数据库对应的实体类和映射文件(以MySQL为例)

    首先需要为eclipse添加对Hibernate的支持(也就是下载的Hibernate中的jar包),下载方法另查,这里不多做阐述. 想要使用反转工程,首先要下载Hibernate反转工程的插件Jbo ...

  6. CSS3属性之圆角效果——border-radius属性

    在css3之前,要实现圆角的效果可以通过图片或者用margin属性实现(可以参考这里:http://www.hicss.net/css-practise-of-image-round-box/).实现 ...

  7. 前端性能监控系统 & 前端数据分析系统

    前端监控系统 目前已经上线,欢迎使用! 背景:应工作要求,需要整理出前端项目的报错信息,尝试过很多统计工具,如: 腾讯bugly.听云.OneApm.还有一个忘记名字的工具. 因为各种原因,如: 统计 ...

  8. 使用.Net+非关系型数据库MongoDB 实现LBS商家按距离排序_按离我最近排序

    .Net MongoDB LBS地理位置定位 开发过程,实现商家按距离排序 前言: 在使用美团点外卖,看电影,找好吃的时候,经常会注意到软件有一个按距离排序,找离我最近的商家,心中有一些疑问,.Net ...

  9. 计蒜客NOIP2017提高组模拟赛(五)day2-蚂蚁搬家

    传送门 这题可以用线段树来维护 #include<cstdio> #include<cstdlib> #include<algorithm> #include< ...

  10. ●UVa 1589 Xiangqi(模拟)

    ●赘述题意 给出一个中国象棋残局,告诉各个棋子的位置,黑方只有1枚“将”,红方有至少2枚,至多7枚棋子,包含1枚“帅G”,和若干枚“车R”,“马H”,“炮C”.当前为黑方的回合,问黑方的“将”能否在移 ...