$Apple~Catching$
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 16248   Accepted: 8009

$Description$

It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.

Each minute, one of the two apple trees drops an apple. Bessie,
having much practice, can catch an apple if she is standing under a tree
from which one falls. While Bessie can walk between the two trees
quickly (in much less than a minute), she can stand under only one tree
at any time. Moreover, cows do not get a lot of exercise, so she is not
willing to walk back and forth between the trees endlessly (and thus
misses some apples).

Apples fall (one each minute) for T (1 <= T <= 1,000) minutes.
Bessie is willing to walk back and forth at most W (1 <= W <= 30)
times. Given which tree will drop an apple each minute, determine the
maximum number of apples which Bessie can catch. Bessie starts at tree
1.

$Input$

* Line 1: Two space separated integers: T and W

* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

$Output$

* Line 1: The maximum number of apples Bessie can catch without walking more than W times.

$Sample~Input$

7 2
2
1
1
2
2
1
1

$Sample~Output$

6

Hint

INPUT DETAILS:

Seven apples fall - one from tree 2, then two in a row from tree 1,
then two in a row from tree 2, then two in a row from tree 1. Bessie is
willing to walk from one tree to the other twice.

OUTPUT DETAILS:

Bessie can catch six apples by staying under tree 1 until the first
two have dropped, then moving to tree 2 for the next two, then returning
back to tree 1 for the final two.

Source

 
以上来自百度百科

解法一:
  用一个数组$f_{i,j}$表示第$i$时刻,走了$j$步的最多苹果数。
  状态转移方程为:
    从第一棵苹果树出发:
      $$f_{i,j}=max\{f_{i-1,j},f_{i-1,j-1}\}+(j~\mod~2)= a_i$$
    从第二棵苹果树出发:
      $$f_{i,j}=max\{f_{i-1,j},f_{i-1,j-1}\}+(j~\mod~2)\neq a_i$$
  $code:$
#include <cstdio>
#include <cstring>
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std; int read()
{
int x=0,f=1;char c=getchar();
while (c<'0' || c>'9'){if (c=='-')f=-1;c=getchar();}
while (c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-48;c=getchar();}
return x*f;
} const int MAXN=1005;
const int MAXM=45;
int n,m;
int a[MAXN];
int f[MAXN][MAXM]; int main()
{
n=read();m=read();
for (int i=1;i<=n;i++) a[i]=read()-1;
memset(f,0,sizeof(f));
for (int i=1;i<=n;i++)
for (int j=0;j<=m;j++)
f[i][j]=max(f[i-1][j],f[i-1][j-1])+((j&1)==a[i]);
int ans=0;
for (int i=0;i<=m;i++)
ans=max(ans,f[n][i]);
memset(f,0,sizeof(f));
for (int i=1;i<=n;i++)
for (int j=0;j<=m;j++)
f[i][j]=max(f[i-1][j],f[i-1][j-1])+((j&1)!=a[i]);
for (int i=0;i<=m;i++)
ans=max(ans,f[n][i]);
printf("%d\n",ans);
return 0;
}

解法二:

  用一个数组$f_{i,j}$表示移动了$i$步,当前位置在第$j$棵苹果树下的时候的最多苹果数。

  对于第$k$棵树上掉下的一个苹果,要么是之前就已经移动$i$步到了第$k$棵树并等到苹果掉下,或者是移动$i-1$步,到另一棵树下,现在赶到这棵树下。状态转移方程为:

    $$f_{i,j}=max\{f_{i,j},f_{i-1,(j+1)\mod~2}\}+1$$

  $code:$

#include <iostream>
#include <cstdio>
using namespace std; int read()
{
int x=0,f=1;char c=getchar();
while (c<'0' || c>'9'){if (c=='-')f=-1;c=getchar();}
while (c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-48;c=getchar();}
return x*f;
}
int n,w,come;
int a[31][2]={0}; int main()
{
n=read();w=read();
for(int i=1;i<=n;i++)
{
come=read()-1;
for (int j=0;j<=w;j++)
a[j][come]=max(a[j][come]+1,a[j-1][(come+1)%2]+1);
}
printf("%d\n",max(a[w][0],a[w][1]));
return 0;
}

POJ2385——Apple Catching的更多相关文章

  1. poj2385 Apple Catching (线性dp)

    题目传送门 Apple Catching Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 154 ...

  2. poj2385 Apple Catching(dp状态转移方程推导)

    https://vjudge.net/problem/POJ-2385 猛刷简单dp的第一天的第一题. 状态:dp[i][j]表示第i秒移动j次所得的最大苹果数.关键要想到移动j次,根据j的奇偶判断人 ...

  3. poj2385 - Apple Catching【动态规划】

    Description It is a little known fact that cows love apples. Farmer John has two apple trees (which ...

  4. poj2385 Apple Catching

    思路: 简单dp. 实现: #include <iostream> #include <cstdio> #include <cstring> using names ...

  5. 【POJ - 2385】Apple Catching(动态规划)

    Apple Catching 直接翻译了 Descriptions 有两棵APP树,编号为1,2.每一秒,这两棵APP树中的其中一棵会掉一个APP.每一秒,你可以选择在当前APP树下接APP,或者迅速 ...

  6. Apple Catching(POJ 2385)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9978   Accepted: 4839 De ...

  7. Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9831   Accepted: 4779 De ...

  8. BZOJ 3384: [Usaco2004 Nov]Apple Catching 接苹果( dp )

    dp dp( x , k ) = max( dp( x - 1 , k - 1 ) + *** , dp( x - 1 , k ) + *** ) *** = 0 or 1 ,根据情况 (BZOJ 1 ...

  9. 3384/1750: [Usaco2004 Nov]Apple Catching 接苹果

    3384/1750: [Usaco2004 Nov]Apple Catching 接苹果 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 18  Solv ...

随机推荐

  1. Java~关于开发工具和包包

    大叔也学java了,距离上学时接触的java已经有10多年了,看着确实有些陌生了,不过还是希望学学,感受一下这个当今最牛X的语言!开发工具IDE对于一个语言来说是很必要的,就是Csharp使用vs一样 ...

  2. Java基础系列-equals方法和hashCode方法

    原创文章,转载请标注出处:<Java基础系列-equals方法和hashCode方法> 概述         equals方法和hashCode方法都是有Object类定义的. publi ...

  3. DSAPI 键盘鼠标钩子

    通常,说到Hook键盘鼠标,总需要一大堆代码,涉及各种不明白的API.而在DSAPI中,可以说已经把勾子简化到不能再简化的地步.甚至不需要任何示例代码即会使用.那么如何实现呢? Private Wit ...

  4. 【译】《C# Tips -- Write Better C#》

    [译]<C# Tips -- Write Better C#> <C# 奇淫巧技 -- 编写更优雅的 C#> 目录 介绍(Introduction) 第一部分:各种奇淫巧技(P ...

  5. h5页面 video暂停播放 视频控件 以及当前页面只有一个可以播放效果

    <!DOCTYPE html> <html> <head> <meta name="viewport" content="wid ...

  6. 我的世界 ParaCraft 结合开源地图 OpenStreetMap 生成3D校园的方法简介

    我的世界ParaCraft结合开源地图OpenStreetMap生成3D校园的方法简介 版本1.0 日期2019.2.3 作者Ray (82735589@qq.com) www.TimeGIS.com ...

  7. 在 Angular 8 中,我们可以期待些什么

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 本文由葡萄城翻译并发布 --- Angular 作为一款优秀的前端框架,自诞生之日起,就致力于面向前端开发者 ...

  8. Chromium被用于Microsoft Edge与ChakraCore的未来【译】

    注:英语不好,力求大概能懂.持笔人是:Limin Zhu,好像是中国人,但是没有提供中文版本. 大家好,ChakraCore的朋友们: 昨天,微软公布,Microsoft Edge桌面浏览器采用Chr ...

  9. VS Code常用快捷键大全

    常用 General 按 Press 功能 Function Ctrl + Shift + P,F1 显示命令面板 Show Command Palette Ctrl + P 快速打开 Quick O ...

  10. 如何取消Microsoft账户登录电脑

    手贱用Microsoft账户登录了一下笔记本里面的日历,TNND微软直接就把你电脑的登录账户直接改成了微软账户,花了1个小时才搞回去. 步骤如下: 0--脑残微软的设计,点了下日历,弹出下面这个,绝对 ...