$Apple~Catching$
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 16248   Accepted: 8009

$Description$

It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.

Each minute, one of the two apple trees drops an apple. Bessie,
having much practice, can catch an apple if she is standing under a tree
from which one falls. While Bessie can walk between the two trees
quickly (in much less than a minute), she can stand under only one tree
at any time. Moreover, cows do not get a lot of exercise, so she is not
willing to walk back and forth between the trees endlessly (and thus
misses some apples).

Apples fall (one each minute) for T (1 <= T <= 1,000) minutes.
Bessie is willing to walk back and forth at most W (1 <= W <= 30)
times. Given which tree will drop an apple each minute, determine the
maximum number of apples which Bessie can catch. Bessie starts at tree
1.

$Input$

* Line 1: Two space separated integers: T and W

* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

$Output$

* Line 1: The maximum number of apples Bessie can catch without walking more than W times.

$Sample~Input$

7 2
2
1
1
2
2
1
1

$Sample~Output$

6

Hint

INPUT DETAILS:

Seven apples fall - one from tree 2, then two in a row from tree 1,
then two in a row from tree 2, then two in a row from tree 1. Bessie is
willing to walk from one tree to the other twice.

OUTPUT DETAILS:

Bessie can catch six apples by staying under tree 1 until the first
two have dropped, then moving to tree 2 for the next two, then returning
back to tree 1 for the final two.

Source

 
以上来自百度百科

解法一:
  用一个数组$f_{i,j}$表示第$i$时刻,走了$j$步的最多苹果数。
  状态转移方程为:
    从第一棵苹果树出发:
      $$f_{i,j}=max\{f_{i-1,j},f_{i-1,j-1}\}+(j~\mod~2)= a_i$$
    从第二棵苹果树出发:
      $$f_{i,j}=max\{f_{i-1,j},f_{i-1,j-1}\}+(j~\mod~2)\neq a_i$$
  $code:$
#include <cstdio>
#include <cstring>
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std; int read()
{
int x=0,f=1;char c=getchar();
while (c<'0' || c>'9'){if (c=='-')f=-1;c=getchar();}
while (c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-48;c=getchar();}
return x*f;
} const int MAXN=1005;
const int MAXM=45;
int n,m;
int a[MAXN];
int f[MAXN][MAXM]; int main()
{
n=read();m=read();
for (int i=1;i<=n;i++) a[i]=read()-1;
memset(f,0,sizeof(f));
for (int i=1;i<=n;i++)
for (int j=0;j<=m;j++)
f[i][j]=max(f[i-1][j],f[i-1][j-1])+((j&1)==a[i]);
int ans=0;
for (int i=0;i<=m;i++)
ans=max(ans,f[n][i]);
memset(f,0,sizeof(f));
for (int i=1;i<=n;i++)
for (int j=0;j<=m;j++)
f[i][j]=max(f[i-1][j],f[i-1][j-1])+((j&1)!=a[i]);
for (int i=0;i<=m;i++)
ans=max(ans,f[n][i]);
printf("%d\n",ans);
return 0;
}

解法二:

  用一个数组$f_{i,j}$表示移动了$i$步,当前位置在第$j$棵苹果树下的时候的最多苹果数。

  对于第$k$棵树上掉下的一个苹果,要么是之前就已经移动$i$步到了第$k$棵树并等到苹果掉下,或者是移动$i-1$步,到另一棵树下,现在赶到这棵树下。状态转移方程为:

    $$f_{i,j}=max\{f_{i,j},f_{i-1,(j+1)\mod~2}\}+1$$

  $code:$

#include <iostream>
#include <cstdio>
using namespace std; int read()
{
int x=0,f=1;char c=getchar();
while (c<'0' || c>'9'){if (c=='-')f=-1;c=getchar();}
while (c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-48;c=getchar();}
return x*f;
}
int n,w,come;
int a[31][2]={0}; int main()
{
n=read();w=read();
for(int i=1;i<=n;i++)
{
come=read()-1;
for (int j=0;j<=w;j++)
a[j][come]=max(a[j][come]+1,a[j-1][(come+1)%2]+1);
}
printf("%d\n",max(a[w][0],a[w][1]));
return 0;
}

POJ2385——Apple Catching的更多相关文章

  1. poj2385 Apple Catching (线性dp)

    题目传送门 Apple Catching Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 154 ...

  2. poj2385 Apple Catching(dp状态转移方程推导)

    https://vjudge.net/problem/POJ-2385 猛刷简单dp的第一天的第一题. 状态:dp[i][j]表示第i秒移动j次所得的最大苹果数.关键要想到移动j次,根据j的奇偶判断人 ...

  3. poj2385 - Apple Catching【动态规划】

    Description It is a little known fact that cows love apples. Farmer John has two apple trees (which ...

  4. poj2385 Apple Catching

    思路: 简单dp. 实现: #include <iostream> #include <cstdio> #include <cstring> using names ...

  5. 【POJ - 2385】Apple Catching(动态规划)

    Apple Catching 直接翻译了 Descriptions 有两棵APP树,编号为1,2.每一秒,这两棵APP树中的其中一棵会掉一个APP.每一秒,你可以选择在当前APP树下接APP,或者迅速 ...

  6. Apple Catching(POJ 2385)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9978   Accepted: 4839 De ...

  7. Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9831   Accepted: 4779 De ...

  8. BZOJ 3384: [Usaco2004 Nov]Apple Catching 接苹果( dp )

    dp dp( x , k ) = max( dp( x - 1 , k - 1 ) + *** , dp( x - 1 , k ) + *** ) *** = 0 or 1 ,根据情况 (BZOJ 1 ...

  9. 3384/1750: [Usaco2004 Nov]Apple Catching 接苹果

    3384/1750: [Usaco2004 Nov]Apple Catching 接苹果 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 18  Solv ...

随机推荐

  1. PyQt:自定义QLineEdit禁止选中复制粘贴

    说明 自定义的QLineEdit,当输入文本之后,禁止选中复制粘贴等操作 实现方法 MyQLineEdit类继承了QLineEdit类,并重写QLineEdit类中的mouseMoveEvent方法和 ...

  2. 4.2WebHost配置「深入浅出ASP.NET Core系列」

    希望给你3-5分钟的碎片化学习,可能是坐地铁.等公交,积少成多,水滴石穿,谢谢关注. WebHost配置 覆盖配置文件和修改启动URL 覆盖配置文件和修改启动URL是经常使用的地方,覆盖配置文件可以自 ...

  3. JAVA WEB快速入门之从编写一个JSP WEB网站了解JSP WEB网站的基本结构、调试、部署

    接上篇<JAVA WEB快速入门之环境搭建>,在完成了环境搭建后(JDK.Tomcat.IDE),现在是万事具备,就差写代码了,今天就来从编写一个JSP WEB网站了解JSP WEB网站的 ...

  4. [Flashback]开启数据库闪回数据库功能

    Flashback是Oracle中一个重要的功能,想要使用闪回数据库功能,需要将数据库置于闪回数据库的状态. 1.检查数据库是否开启归档状态 SQL> archive log list; Dat ...

  5. Manacher's Algorithm(马拉车算法)

    ## 背景 该算法用于求字符串的最长回文子串长度. ## 参考文章 >[最长回文子串——Manacher 算法](https://segmentfault.com/a/1190000003914 ...

  6. MyBatis入门简述

    MyBatis前身是iBatis,为Apache的一个开源项目.2010年迁移到了Google Code,改名为MyBatis.2013年迁移到Github. MyBatis是一个优秀的持久层框架,它 ...

  7. 如何编写最佳的Dockerfile

    译者按: Dockerfile 的语法非常简单,然而如何加快镜像构建速度,如何减少 Docker 镜像的大小却不是那么直观,需要积累实践经验.这篇博客可以帮助你快速掌握编写 Dockerfile 的技 ...

  8. element表格添加序号

    表格代码:黄色部分为序号列关键代码上图: <el-table :data="tableData" border height="480" style=&q ...

  9. JavaScript基础-3

    3 运算符 按照个数分类可分为:一元运算符.二元运算符.三元运算符: 按照功能分类可分为:算数运算符.自增运算符.比较运算符.逻辑运算符.赋值运算符: 3.1 算数运算符 算术运算符包含了加减乘除,符 ...

  10. Centos7 二进制安装 Kubernetes 1.13

    目录 1.目录 1.1.什么是 Kubernetes? 1.2.Kubernetes 有哪些优势? 2.环境准备 2.1.网络配置 2.2.更改 HOSTNAME 2.3.配置ssh免密码登录登录 2 ...