Mahmoud wrote a message s of length n. He wants to send it as a birthday present to his friend Moaz who likes strings. He wrote it on a magical paper but he was surprised because some characters disappeared while writing the string. That's because this magical paper doesn't allow character number i in the English alphabet to be written on it in a string of length more than ai. For example, if a1 = 2 he can't write character 'a' on this paper in a string of length 3 or more. String "aa" is allowed while string "aaa" is not.

Mahmoud decided to split the message into some non-empty substrings so that he can write every substring on an independent magical paper and fulfill the condition. The sum of their lengths should be n and they shouldn't overlap. For example, if a1 = 2 and he wants to send string "aaa", he can split it into "a" and "aa" and use 2 magical papers, or into "a", "a" and "a" and use 3 magical papers. He can't split it into "aa" and "aa" because the sum of their lengths is greater than n. He can split the message into single string if it fulfills the conditions.

A substring of string s is a string that consists of some consecutive characters from string s, strings "ab", "abc" and "b" are substrings of string "abc", while strings "acb" and "ac" are not. Any string is a substring of itself.

While Mahmoud was thinking of how to split the message, Ehab told him that there are many ways to split it. After that Mahmoud asked you three questions:

  • How many ways are there to split the string into substrings such that every substring fulfills the condition of the magical paper, the sum of their lengths is n and they don't overlap? Compute the answer modulo 109 + 7.
  • What is the maximum length of a substring that can appear in some valid splitting?
  • What is the minimum number of substrings the message can be spit in?

Two ways are considered different, if the sets of split positions differ. For example, splitting "aa|a" and "a|aa" are considered different splittings of message "aaa".

Input

The first line contains an integer n (1 ≤ n ≤ 103) denoting the length of the message.

The second line contains the message s of length n that consists of lowercase English letters.

The third line contains 26 integers a1, a2, ..., a26 (1 ≤ ax ≤ 103) — the maximum lengths of substring each letter can appear in.

Output

Print three lines.

In the first line print the number of ways to split the message into substrings and fulfill the conditions mentioned in the problem modulo 109  +  7.

In the second line print the length of the longest substring over all the ways.

In the third line print the minimum number of substrings over all the ways.

Examples
input
3
aab
2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
output
3
2
2
input
10
abcdeabcde
5 5 5 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
output
401
4
3
Note

In the first example the three ways to split the message are:

  • a|a|b
  • aa|b
  • a|ab

The longest substrings are "aa" and "ab" of length 2.

The minimum number of substrings is 2 in "a|ab" or "aa|b".

Notice that "aab" is not a possible splitting because the letter 'a' appears in a substring of length 3, while a1 = 2.

题意:说的是字符串分割,不过是有条件的,一个字符在一个分割区域是不能出现超过ai次,问能分几次,每个区间最长多少,最短多少

解法:

1 dp[i]表示到第i位置能分割多少次,和它前i-j的位置有关,j<=i(表示能分割的长度)i-j+1是距离i有j个长度的地方(在i的左边)

2 每次讨论j都需要验证是不是满足条件,是的话就是+dp[i-j]

3 最长的距离当然是比较j喽,最短的话比较Min[i-j]+1和Min[i]

 #include<bits/stdc++.h>
using namespace std;
int n;
char s[];
int mod=1e9+;
long long dp[];
long long a[];
long long Min[];
int solve(int x,int y,int len){
int Len=len;
for(int i=x;i<=y;i++){
if(Len>a[s[i]-'a']){
return ;
}
}
return ;
}
int main(){
cin>>n;
cin>>s+;
for(int i=;i<;i++){
cin>>a[i];
}
dp[]=;
int maxn=;
for(int i=;i<=n;i++){
Min[i]=1e9;
for(int j=;j<=i;j++){
if(solve(i-j+,i,j)){
dp[i]+=(dp[i-j]%mod);
dp[i]%=mod;
maxn=max(j,maxn);
Min[i]=min(Min[i-j]+,Min[i]);
}
}
}
cout<<dp[n]%mod<<endl;
cout<<maxn<<endl;
cout<<Min[n]<<endl;
return ;
}

Codeforces Round #396 (Div. 2) C的更多相关文章

  1. Codeforces Round #396 (Div. 2) D. Mahmoud and a Dictionary 并查集

    D. Mahmoud and a Dictionary 题目连接: http://codeforces.com/contest/766/problem/D Description Mahmoud wa ...

  2. Codeforces Round #396 (Div. 2) A,B,C,D,E

    A. Mahmoud and Longest Uncommon Subsequence time limit per test 2 seconds memory limit per test 256 ...

  3. Codeforces Round #396 (Div. 2) A B C D 水 trick dp 并查集

    A. Mahmoud and Longest Uncommon Subsequence time limit per test 2 seconds memory limit per test 256 ...

  4. Codeforces Round #396 (Div. 2) D. Mahmoud and a Dictionary

    地址:http://codeforces.com/contest/766/problem/D 题目: D. Mahmoud and a Dictionary time limit per test 4 ...

  5. Codeforces Round #396 (Div. 2) D

    Mahmoud wants to write a new dictionary that contains n words and relations between them. There are ...

  6. Codeforces Round #396 (Div. 2) E. Mahmoud and a xor trip dfs 按位考虑

    E. Mahmoud and a xor trip 题目连接: http://codeforces.com/contest/766/problem/E Description Mahmoud and ...

  7. Codeforces Round #396 (Div. 2) C. Mahmoud and a Message dp

    C. Mahmoud and a Message 题目连接: http://codeforces.com/contest/766/problem/C Description Mahmoud wrote ...

  8. Codeforces Round #396 (Div. 2) B. Mahmoud and a Triangle 贪心

    B. Mahmoud and a Triangle 题目连接: http://codeforces.com/contest/766/problem/B Description Mahmoud has ...

  9. Codeforces Round #396 (Div. 2) A. Mahmoud and Longest Uncommon Subsequence 水题

    A. Mahmoud and Longest Uncommon Subsequence 题目连接: http://codeforces.com/contest/766/problem/A Descri ...

  10. Codeforces Round #396 (Div. 2) E. Mahmoud and a xor trip

    地址:http://codeforces.com/contest/766/problem/E 题目: E. Mahmoud and a xor trip time limit per test 2 s ...

随机推荐

  1. [CPP - STL] swap技巧

    最近在看<Effective STL>,[条款17:使用“交换技巧”修整过剩容量]中提到容器的成函数void swap(container& from),即实现容器对象与from对 ...

  2. HDU5965 扫雷 —— dp递推

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5965 题解: 1. 用a[]数组记录第二行的数字,用dp[]记录没一列放的地雷数.如果第一列的地雷数d ...

  3. cnn handwrite使用原生的TensorFlow进行预测

    100个汉字,放在data目录下.直接将下述文件和data存在同一个目录下运行即可. 关键参数: run_mode = "train" 训练模型用,修改为validation 表示 ...

  4. Splay模板(序列终结者)

    我只是一个存模板的,详细的请看这里http://blog.csdn.net/whai362/article/details/47298133 题目链接:http://www.codevs.cn/pro ...

  5. Linux-打包和文件系统

    1 文件后缀 在Linux中后缀没有实际意义 2 打包文件 tar c 创建一个归档 v 查看过程 f 指定文件名 t 列出归档内容 x 从归档中解压出文件 C 改变到哪个目录 z gzip压缩 j ...

  6. 一种C#开发ActiveX的思路

    由于某些原因,不得不在C#下开发ActiveX插件,而这会带来很多问题,主要有无法在线安装.无法自动更新.由于本人水平有些,这两个问题不一定是这样,如果有大侠知道C#下开发ActiveX插件可实现在线 ...

  7. EasyUI 下载与引用

    1.官网下载地址: http://www.jeasyui.com/download/index.php 一般下载 “GPL Edition” (开源版本). 2.目录结构: demo:案例,可以删 l ...

  8. 如果后台用framset框架布局,session过期,整个跳出回 登录页面的方法

    如果session过期了,登录页面会在framset框架的右边显示,只能用 js 来做,让整个框架跳出去: 然而,这里 js 必须要用“top”才可以,作用是让整个framset都跳转,直接用 win ...

  9. Linux中如何开启8080端口供外界访问 和开启允许对外访问的端口8000

    举例: 开放10000端口的解决步骤如下: 1.修改/etc/sysconfig/iptables文件,增加如下一行: -A INPUT -m state --state NEW -m tcp -p ...

  10. Coding 两步认证技术介绍

    什么是两步认证 在介绍两步认证之前,首先来看下目前主流的几种认证方式. 上图中的认证方式大体上可以分为三大类 1.You know : 比如密码,这种只有我们知道的 2.You are : 比如指纹, ...