在进行自然语言处理中,需要对文章的中的语义进行分析,于是迫切需要一些模型去描述词汇的含义,很多人可能都知道word2vector算法,诚然,word2vector是一个非常优秀的算法,并且被广泛运用,为人们熟知,然而,从结果的优劣性来看,其实word2vector并非唯一的优秀方案,斯坦福大学提出的GloVe就是其中之一。今天我来为大家介绍一下GloVe模型,但是重点,还是放在实现上。

原论文:http://www.eecs.wsu.edu/~sji/classes/DL16/CNN-text/glove.pdf

简单地说一下原理

这里的原理我主要参考了两篇博客,感谢两位优秀的博主。

前者会比较通俗,后者则比较深刻。

共现关系

和word2vector不同,GloVe更倾向于进行分析前后语境之间的共现关系,通过共现关系抽象出词向量。

所谓的共现,共同出现,其实就是看一个词有没有在另一个词的附近出现,所谓的附近,其实就是一个移动窗口的概念,定义窗口的半径(从中心词到边缘的距离)后,看看方圆多少范围内出现词的个数,就是共现,现在看看例子。

假设语料库就只有下面一行:

i love you but you love him i am sad

设半径为2,于是移动窗口的滑动就有下面的形式:

以窗口5为例,此处就可以认为,love分别和but, you, him, i共同出现了一次,通过这种方式去计数,就能知道任意两个词之间的共现关系(一般是可逆的),构成共现矩阵X,一般地,X是一个对称矩阵。

词向量的产生

首先,模型的损失函数长这样的:

 
image

vi和vj是词汇i和j的词向量,bi和bj是常数项,f是特定的权重函数,N是词汇表大小。

这个损失函数怎么来的,我觉得上面的第一个链接讲的非常清楚,看的时候注意一个核心,就是考虑两个词汇的共现关系与词向量之间的关系(映射)尽可能接近,于是就构造了上面的损失函数。

GloVe的Python实现

在pypi里面看到了很多GloVe的包,但是很多都有坑,我直接说一个我自己已经走通的包mittens。

下载方式还是比较简单的, pip install mittens基本没什么问题,想要去看看源码的话,在这里:

https://github.com/roamanalytics/mittens

一般而言GloVe按照计算共现矩阵和GloVe训练两大模块,而mittens里面其实只提供了后者,前者还是需要自己写,这是我写的部分内容,给大家详细讲讲(复杂度啥的基本没做什么优化,欢迎提出一些意见)。

共现矩阵的计算

将之前事先说明一下,现在读进来的数据,即代码中的“data”变量,每行不是对应的单词或者短语,而是已经对应在词典中的该短语的index(自己构建词典,一般设置为0-(N-1),N为词典中词语的个数),尤其在后面的cooccurrence的统计,即如果句子数组中的第i个词语是词典中的第j个词,则句子向量中第i个位置就是数字j,这种方式对cooccurrence的统计非常方便。

# 构建空的词表
coWindow = 3 # 共现窗口大小(半径)
tableSize = 1000 # 共现矩阵维度
cooccurrence = np.zeros((tableSize, tableSize), "int64" )

首先是数据初始化,这里不详细说数据载入了,但是共现矩阵当然是需要初始化的(np是numpy别忘了)。

# 开始统计
flag = 0
for item in data:
itemInt = [int(x) for x in item]
for core in range(1, len(item)):
if core <= coWindow + 1:
# 左窗口不足
window = itemInt[1:core + coWindow + 1]
coreIndex = core - 1
cooccurrence = countCOOC(cooccurrence, window, coreIndex)
elif core >= len(item) - 1 - coWindow:
# 右窗口不足
window = itemInt[core - coWindow:(len(item))]
coreIndex = coWindow
cooccurrence = countCOOC(cooccurrence, window, coreIndex)
else:
# 左右均没有问题
window = itemInt[core - coWindow:core + coWindow + 1]
coreIndex = coWindow
cooccurrence = countCOOC(cooccurrence, window, coreIndex)
flag = flag + 1
if flag % 1000 == 0:
endTime = datetime.datetime.now()
print("已经计算了%s条数据,用时%s" % (flag, endTime - startTime))

这一块里面主要是为了设置移动窗口来进行挪动识别,具体统计移动窗口内部的共现,是在countCOOC函数里面做的。

def countCOOC(cooccurrence, window, coreIndex):
# cooccurrence:当前共现矩阵
# window:当前移动窗口数组
# coreIndex:当前移动窗口数组中的窗口中心位置
for index in range(len(window)):
if index == coreIndex:
continue
else:
cooccurrence[window[coreIndex]][window[index]] = cooccurrence[window[coreIndex]][window[index]] + 1
return cooccurrence

countCOOC用来当前移动窗口的共现,一个一个计数即可。

GloVe的训练

# 包的引入
from mittens import GloVe
# 初始化模型
vecLength=100 # 矩阵长度
max_iter=100000 # 最大迭代次数
display_progress=1000 # 每次展示
glove_model = GloVe(n=vecLength, max_iter=max_iter, display_progress=display_progress)
# 模型训练与结果输出
embeddings = glove_model.fit(coocMatric)

引入包之后,配置相应的参数,然后可以开始训练,训练完的返回值embeddings就是得到的词向量词典,通过词向量词典,就能够将每篇文本的每一个单词转化为词向量,从而进行进一步分析。

小结

GloVe终于写完了,不知道大家觉得怎么样,关于原理写的人相对比较多,也理解的比我好我就不再解释了,而代码这块,网上写的不多,所以我写得详细一些,这也是我把结果写出来的核心代码,有什么问题我来回答,欢迎通过下面的联系方式联系我。

作者:机智的叉烧
链接:https://www.jianshu.com/p/d0cb367752e8
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

NLP.TM | GloVe模型及其Python实现的更多相关文章

  1. 理解GloVe模型(Global vectors for word representation)

    理解GloVe模型 概述 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息.输入:语料库输出:词向量方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学 ...

  2. L25词嵌入进阶GloVe模型

    词嵌入进阶 在"Word2Vec的实现"一节中,我们在小规模数据集上训练了一个 Word2Vec 词嵌入模型,并通过词向量的余弦相似度搜索近义词.虽然 Word2Vec 已经能够成 ...

  3. NLP学习(1)---Glove模型---词向量模型

    一.简介: 1.概念:glove是一种无监督的Word representation方法. Count-based模型,如GloVe,本质上是对共现矩阵进行降维.首先,构建一个词汇的共现矩阵,每一行是 ...

  4. 斯坦福NLP课程 | 第12讲 - NLP子词模型

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  5. lda模型的python实现

    LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,最近看了点资料,准备使用python实现一下.至于数学模型相关知识,某度一大堆,这里也给出之前参考过的一个挺详细 ...

  6. NLP︱LDA主题模型的应用难题、使用心得及从多元统计角度剖析

    将LDA跟多元统计分析结合起来看,那么LDA中的主题就像词主成分,其把主成分-样本之间的关系说清楚了.多元学的时候聚类分为Q型聚类.R型聚类以及主成分分析.R型聚类.主成分分析针对变量,Q型聚类针对样 ...

  7. NLP一些工程应用模型

    发现一个DL的博客,对文章分类归纳做的比较好:第三篇文章中的模型可以重点参考 “自然语言学习资料的汇总” 综述 | 一文读懂自然语言处理NLP(附学习资料) 用深度学习(CNN RNN Attenti ...

  8. 通过ORM模型看python对象创建过程

    简易django ORM模型如下所示: #!/usr/bin/env python # encoding: utf-8 """ @version: 1.0 @author ...

  9. 算法工程师进化-NLP之主题模型

    1 引言 主题模型是文本挖掘的重要工具,近年来在学术界和工业届都获得了非常多的关注.学术界的工作主要集中在建模层面,即提出各种各样的主题模型来适应不同的场景,因此缺乏指导主题模型在工业场景落地的资源和 ...

随机推荐

  1. HDU3065【AC自动机-AC感言】

    Fourth AC zi dong ji(Aho-Corasick Automation) of life 9A(其实不止交了10发...) 感言: 一开始多组数据这种小数据还是...无伤大局,因为改 ...

  2. P4091 [HEOI2016/TJOI2016]求和(第二类斯特林数+NTT)

    传送门 首先,因为在\(j>i\)的时候有\(S(i,j)=0\),所以原式可以写成\[Ans=\sum_{i=0}^n\sum_{j=0}^nS(i,j)\times 2^j\times j! ...

  3. 百度搜索:有关Baiduspider的10个问题

    猫宁!!! 参考链接: http://help.baidu.com/question?prod_id=99&class=476&id=2996 https://ziyuan.baidu ...

  4. JS中一个new到底做了哪些事情?

    1.https://www.cnblogs.com/faith3/p/6209741.html 2.https://www.cnblogs.com/AaronNotes/p/6529492.html

  5. [题解](区间质数筛)POJ_2689 Prime Distance

    区间筛素数:先筛出1~sqrt(R)的素数,然后对于每个询问只要用这些素数筛掉区间内的合数即可. 几个细节:1.特判和1有关的一些情况 2.每次减去L偏移量,数组只开区间大小 3.POJ无法使用万能头 ...

  6. C#静态类、静态构造函数,类与结构体的比较

    一.静态类 静态类是不能实例化的,我们直接使用它的属性与方法,静态类最大的特点就是共享. 探究 public static class StaticTestClass{    public stati ...

  7. Oracle Database Hang While Loading 3rd party SBT Library And After This Nobody Can Access The Database (windows login 登陆hang )

    Applies to: Oracle Database - Enterprise Edition - Version 11.2.0.4 and later Microsoft Windows x64 ...

  8. css未知宽度水平居中整理

    1.text-align 兼容性很好 .wp {text-align: center;} .test {display: inline;} <ul class="wp"> ...

  9. iis日志存放位置 及 查看方法

    IIS:控制面板--管理工具--internet信息服务 网站的IIS日志是在空间里面看的.要登陆到空间里面的一个IIS日志里面看.IIS日志一般都很大的.看会有点.. 一.应用程序日志.安全日志.系 ...

  10. lowbit

    树状数组(lowbit) Time Limit:1000ms   Memory Limit:128MB 题目描述 这天,LYK在学习树状数组. 当它遇到一个叫lowbit的函数时有点懵逼.lowbit ...