Adaboost也是一种原理简单,但很实用的有监督机器学习算法,它是daptive boosting的简称。说到boosting算法,就不得提一提bagging算法,他们两个都是把一些弱分类器组合起来来进行分类的方法,统称为集成方法(ensemble method),类似于投资,“不把鸡蛋放在一个篮子”,虽然每个弱分类器分类的不那么准确,但是如果把多个弱分类器组合起来可以得到相当不错的结果,另外要说的是集成方法还可以组合不同的分类器,而Adaboost和boosting算法的每个弱分类器的类型都一样的。他们两个不同的地方是:boosting的每个弱分类器组合起来的权重不一样,本节的Adaboost就是一个例子,而bagging的每个弱分类器的组合权重是相等,代表的例子就是random forest。Random forest的每个弱分类器是决策树,输出的类别有多个决策树分类的类别的众数决定。今天的主题是Adaboost,下面来看看Adaboost的工作原理:

既然Adaboost的每个弱分类器的类型都一样,那么怎么组织安排每个分类器呢?如(图一)所示:

(图一)

(图一)是Adaboost的原理示意图,左边矩形表示数据集,中间表示根据特征阈值来做分类,这样每一个弱分类器都类似于一个单节点的决策树,其实就是阈值判断而已,右边的三角形对每个弱分类器赋予一个权重,最后根据每个弱分类器的加权组合来判断总体类别。要注意一下数据集从上到下三个矩形内的直方图不一样,这表示每个样本的权重也发生了变化,样本权重的一开始初始化成相等的权重,然后根据弱分类器的错误率来调整每个弱分类器的全总alpha,如(图一)中的三角形所示,alpha 的计算如(公式一)所示:

(公式一)

从(公式一)中也能感觉出来,弱分类器权重alpha和弱分类器分类错误率epsilon成反比,如果不能看出反比关系,分子分母同时除以epsilon就可以了,而ln是单调函数。这很make sense,当然分类器的错误率越高,越不能器重它,它的权重就应该低。同样的道理,样本也要区分对待,样本的权重要用弱分类器权重来计算,其实也是间接靠分类错误率,如(公式二)所示:

(公式二)

其中D表示样本权重向量,有多少个样本就有多少个权重,下标i表示样本索引,而上标t表示上一次分类器训练迭代次数。这样一直更新迭代,一直到最大迭代次数或者整个分类器错误率为0或者不变时停止迭代,就完成了Adaboost的训练。但是这样就可以把样本分开了吗?下面从一组图解答这个问题,如(图二)所示:

(图二)

由(图二)所示,每个弱分类器Hi可以要求不高的准确率,哪怕错误率是50%也可以接受,但是最后通过线性加权组合就可以得到一个很好的分类器,这点也可以通过错误率分析验证,有兴趣的可以看看:http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Eric-Boosting304FinalRpdf.pdf,想了解为什么alpha的计算如(公式一)的样子,可以看看:http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Eric-Boosting304FinalRpdf.pdf

这样Adaboost的原理基本分析完毕,下面进入代码实战阶段:

首先来准备个简单数据集:

 from numpy import *

 def loadSimpData():
datMat = matrix([[ 1. , 2.1],
[ 2. , 1.1],
[ 1.3, 1. ],
[ 1. , 1. ],
[ 2. , 1. ]])
classLabels = [1.0, 1.0, -1.0, -1.0, 1.0]
return datMat,classLabels

上面有5个样本,接下来就是初始化每个样本的权重,刚开始相等的:

 D = mat(ones((5,1))/5)

有了样本和初始化权重,接下来的任务就是构建一个弱分类器,其实就是一个单节点决策树,找到决策树每个特征维度上对应的最佳阈值以及表示是大于阈值还是小于阈值为正样本的标识符。代码如下:

 def buildStump(dataArr,classLabels,D):
dataMatrix = mat(dataArr); labelMat = mat(classLabels).T
m,n = shape(dataMatrix)
numSteps = 10.0; bestStump = {}; bestClasEst = mat(zeros((m,1)))
minError = inf #init error sum, to +infinity
for i in range(n):#loop over all dimensions
rangeMin = dataMatrix[:,i].min(); rangeMax = dataMatrix[:,i].max();
stepSize = (rangeMax-rangeMin)/numSteps
for j in range(-1,int(numSteps)+1):#loop over all range in current dimension
for inequal in ['lt', 'gt']: #go over less than and greater than
threshVal = (rangeMin + float(j) * stepSize)
predictedVals = stumpClassify(dataMatrix,i,threshVal,inequal)#call stump classify with i, j, lessThan
errArr = mat(ones((m,1)))
errArr[predictedVals == labelMat] = 0
weightedError = D.T*errArr #calc total error multiplied by D
#print "split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError)
if weightedError < minError:
minError = weightedError
bestClasEst = predictedVals.copy()
bestStump['dim'] = i
bestStump['thresh'] = threshVal
bestStump['ineq'] = inequal
return bestStump,minError,bestClasEst

注意代码中有三个for循环,这三个for循环其实就是为了完成决策树的每个特征维度上对应的最佳阈值以及表示是大于阈值还是小于阈值为正样本的标识符,这三个要素。其中it,gt分别表示大于和小于,阈值的选择是靠增加步长来需找,最终三者的确定是靠决策树分类错误率最小者决定,每个决策树的分类代码如下,很简单,就是靠阈值判断:

 def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):#just classify the data
retArray = ones((shape(dataMatrix)[0],1))
if threshIneq == 'lt':
retArray[dataMatrix[:,dimen] <= threshVal] = -1.0
else:
retArray[dataMatrix[:,dimen] > threshVal] = -1.0
return retArray

有了弱分类器的构造代码,下面来看Adaboost的训练代码:

 def adaBoostTrainDS(dataArr,classLabels,numIt=40):
weakClassArr = []
m = shape(dataArr)[0]
D = mat(ones((m,1))/m) #init D to all equal
aggClassEst = mat(zeros((m,1)))
for i in range(numIt):
bestStump,error,classEst = buildStump(dataArr,classLabels,D)#build Stump
#print "D:",D.T
alpha = float(0.5*log((1.0-error)/max(error,1e-16)))#calc alpha, throw in max(error,eps) to account for error=0
bestStump['alpha'] = alpha
weakClassArr.append(bestStump) #store Stump Params in Array
#print "classEst: ",classEst.T
expon = multiply(-1*alpha*mat(classLabels).T,classEst) #exponent for D calc, getting messy
D = multiply(D,exp(expon)) #Calc New D for next iteration
D = D/D.sum()
#calc training error of all classifiers, if this is 0 quit for loop early (use break)
aggClassEst += alpha*classEst
#print "aggClassEst: ",aggClassEst.T
aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T,ones((m,1)))
errorRate = aggErrors.sum()/m
print "total error: ",errorRate
if errorRate == 0.0: break
return weakClassArr,aggClassEst

上面的代码中训练过程主要任务就是完成(公式二)中的样本权重D和弱分类器权重alpha的更新,另外还要注意一下,代码中迭代了40次,每次都调用了buildStump,这就意味着创建了40个弱分类器。当模型收敛后,有了样本权重和弱弱弱分类器权重,最后就是对测试样本进行分类,分类代码如下:

 def adaClassify(datToClass,classifierArr):
dataMatrix = mat(datToClass)#do stuff similar to last aggClassEst in adaBoostTrainDS
m = shape(dataMatrix)[0]
aggClassEst = mat(zeros((m,1)))
for i in range(len(classifierArr)):
classEst = stumpClassify(dataMatrix,classifierArr[i]['dim'],\
classifierArr[i]['thresh'],\
classifierArr[i]['ineq'])#call stump classify
aggClassEst += classifierArr[i]['alpha']*classEst
print aggClassEst
return sign(aggClassEst)

考虑到有些做学术的为了比较不同机器学习算法的好坏,常常需要画ROC曲线,这里也给出画ROC的代码:

 def plotROC(predStrengths, classLabels):
import matplotlib.pyplot as plt
cur = (1.0,1.0) #cursor
ySum = 0.0 #variable to calculate AUC
numPosClas = sum(array(classLabels)==1.0)
yStep = 1/float(numPosClas); xStep = 1/float(len(classLabels)-numPosClas)
sortedIndicies = predStrengths.argsort()#get sorted index, it's reverse
fig = plt.figure()
fig.clf()
ax = plt.subplot(111)
#loop through all the values, drawing a line segment at each point
for index in sortedIndicies.tolist()[0]:
if classLabels[index] == 1.0:
delX = 0; delY = yStep;
else:
delX = xStep; delY = 0;
ySum += cur[1]
#draw line from cur to (cur[0]-delX,cur[1]-delY)
ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
cur = (cur[0]-delX,cur[1]-delY)
ax.plot([0,1],[0,1],'b--')
plt.xlabel('False positive rate'); plt.ylabel('True positive rate')
plt.title('ROC curve for AdaBoost horse colic detection system')
ax.axis([0,1,0,1])
plt.show()
print "the Area Under the Curve is: ",ySum*xStep

到此位置,Adaboost的代码也介绍完了,最终程序的运行结果如(图三)所示:

(图三)

而Adaboost的模型ROC运行曲线如(图四)所示:

(图四)

最近MIT的几个人证明了Adaboost可以用一阶梯度的角度来解释,详见链接

上面内容转载至朋友博客:http://blog.csdn.net/marvin521/article/details/9319459

Ps: 大爱AdaBoost算法,是一个神奇的算法,我当年的论文就是研究这个算法在噪声和非平衡场景下的性能,AdaBoost在工业界也应用广泛,人脸识别的芯片貌似就嵌入了该算法,关于该算法有了各种各样的解释,如从游戏理论,最大间隔,统计学角度等等,当年关于该算法间隔解释的学术争论也是闹得沸沸扬扬,不过这个问题貌似被我们中国学者王立威给解决了。

Machine Learning in Action(6) AdaBoost算法的更多相关文章

  1. Machine Learning in Action(5) SVM算法

    做机器学习的一定对支持向量机(support vector machine-SVM)颇为熟悉,因为在深度学习出现之前,SVM一直霸占着机器学习老大哥的位子.他的理论很优美,各种变种改进版本也很多,比如 ...

  2. Machine Learning in Action(7) 回归算法

    按照<机器学习实战>的主线,结束有监督学习中关于分类的机器学习方法,进入回归部分.所谓回归就是数据进行曲线拟合,回归一般用来做预测,涵盖线性回归(经典最小二乘法).局部加权线性回归.岭回归 ...

  3. 机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集

    机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集 关键字:FPgrowth.频繁项集.条件FP树.非监督学习作者:米 ...

  4. 机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析

    机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018 ...

  5. 机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记

    机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记 关键字:k-均值.kMeans.聚类.非监督学习作者:米仓山下时间: ...

  6. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

  7. Machine Learning In Action 第二章学习笔记: kNN算法

    本文主要记录<Machine Learning In Action>中第二章的内容.书中以两个具体实例来介绍kNN(k nearest neighbors),分别是: 约会对象预测 手写数 ...

  8. 【机器学习实战】Machine Learning in Action 代码 视频 项目案例

    MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apa ...

  9. 学习笔记之机器学习实战 (Machine Learning in Action)

    机器学习实战 (豆瓣) https://book.douban.com/subject/24703171/ 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中 ...

随机推荐

  1. LeetCode OJ--Longest Consecutive Sequence ***

    http://oj.leetcode.com/problems/longest-consecutive-sequence/ 起初想的是排序,查了下O(n)的排序算法有计数排序.基数排序.桶排序.后来考 ...

  2. AC日记——最短路 洛谷 P2384

    题目背景 狗哥做烂了最短路,突然机智的考了Bosh一道,没想到把Bosh考住了...你能帮Bosh解决吗? 他会给你100000000000000000000000000000000000%10金币w ...

  3. Vue开发之路由进阶

    1.路由组件传参 在一个页面中,需要根据路由获得参数,然后在页面进行逻辑处理,可以通过$route来获取相关参数 但是这样一来,页面组件与路由耦合太高,为了解耦,页面组件可以在更大程度上进行复用,可以 ...

  4. SQLite数据库中rowid使用

    SQLite数据库中rowid使用   SQLite中每个表都默认包含一个隐藏列rowid,使用WITHOUT ROWID定义的表除外.通常情况下,rowid可以唯一的标记表中的每个记录.表中插入的第 ...

  5. 分享Kali Linux 2017年第12周镜像文件

    分享Kali Linux 2017年第12周镜像文件 Kali Linux官方于3月19日发布2017年的第12周镜像.这次维持了11个镜像文件的规模.默认的Gnome桌面的4个镜像,E17.KDE. ...

  6. jenkins按角色授权

    当一个公司的开发分为多个组或者是多个项目时,不能让所有的开发都公用一个构建,否则将会变得很混乱,为了解决这一问题,jenkins提供了角色授权的机制.每个开发有着对应的账号和权限,可以自行新建.构建. ...

  7. Android 源码编译记录

    问题1:Can't locate Switch.pm in @INC (you may need to install the Switch module) (@INC contains: /etc/ ...

  8. Neutron网络入门

    Neutron是OpenStack核心项目之中的一个,提供云计算环境下的虚拟网络功能.Neutron的功能日益强大,并在Horizon面板中已经集成该模块.作为Neutron的核心开发人员之中的一个. ...

  9. C#.NET的TabControl如何隐藏和显示页面

    如果需要显示某个页面,则让他的Parent就是TabControl的控件名称,如果要隐藏,则等于null      private void ToolStripMenuItemTeachPanelBa ...

  10. 最新ssh2构架

    构架要求: 1.最新ssh2jar包. 2.使用全注解. 3.给锁机制 4.缓存. 5.使用权限构架. 6. 前台构架用bootstraps. 今天任务: 搭建php环境.看代码.整理ssh2架构. ...