POJ 3233
矩阵分治
注意不要用 (*this) 会改变原值
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cstdlib>
using namespace std;
int n, p, k;
struct Matrix{
int num[35][35];
void clear() {
memset(num, 0, sizeof(num));
}
void unit() {
clear();
for(int i = 0; i < 35; i++) num[i][i] = 1;
}
Matrix operator * (const Matrix & b) {
Matrix ans;
ans.clear();
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
int tmp = 0;
for(int k = 1; k <= n; k++) {
tmp += num[i][k] * b.num[k][j];
tmp %= p;
}
ans.num[i][j] = tmp;
}
}
return ans;
}
Matrix operator + (const Matrix & b) {
Matrix ans;
ans.clear();
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
ans.num[i][j] = num[i][j] + b.num[i][j];
ans.num[i][j] %= p;
}
}
return ans;
}
Matrix operator ^ (int k) {
Matrix ans, tmp = (*this);
ans.unit();
while(k) {
if(k & 1) ans = ans * tmp;
tmp = tmp * tmp;
k >>= 1;
}
return ans;
}
}a, b;
Matrix work(int cur) {
if(cur == 1) return a;
int mid = cur / 2;
if(mid * 2 == cur) {
Matrix t = work(mid);
return t + t * (a ^ mid);
}else {
Matrix t = work(mid);
return t + t * (a ^ mid) + (a ^ cur);
}
}
int main() {
cin >> n >> k >> p;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
cin >> a.num[i][j];
a.num[i][j] %= p;
}
}
b = work(k);
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
printf("%d ", b.num[i][j]);
}
printf("\n");
}
return 0;
}
POJ 3233的更多相关文章
- POJ 3233 Matrix Power Series(矩阵高速功率+二分法)
职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9. 这 ...
- 矩阵儿快速幂 - POJ 3233 矩阵力量系列
不要管上面的标题的bug 那是幂的意思,不是力量... POJ 3233 Matrix Power Series 描述 Given a n × n matrix A and a positive in ...
- 矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series
poj 1575 Tr A 主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的 ...
- Poj 3233 Matrix Power Series(矩阵二分快速幂)
题目链接:http://poj.org/problem?id=3233 解题报告:输入一个边长为n的矩阵A,然后输入一个k,要你求A + A^2 + A^3 + A^4 + A^5.......A^k ...
- POJ 3233 Matrix Power Series (矩阵+二分+二分)
题目地址:http://poj.org/problem?id=3233 题意:给你一个矩阵A,让你求A+A^2+……+A^k模p的矩阵值 题解:我们知道求A^n我们可以用二分-矩阵快速幂来求,而 当k ...
- POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】
任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K To ...
- Matrix Power Series POJ - 3233 矩阵幂次之和。
矩阵幂次之和. 自己想着想着就想到了一个解法,但是还没提交,因为POJ崩了,做了一个FIB的前n项和,也是用了这个方法,AC了,相信是可以得. 提交了,是AC的 http://poj.org/prob ...
- poj 3233 Matrix Power Series 矩阵求和
http://poj.org/problem?id=3233 题解 矩阵快速幂+二分等比数列求和 AC代码 #include <stdio.h> #include <math.h&g ...
- poj 3233(矩阵高速幂)
题目链接:http://poj.org/problem?id=3233. 题意:给出一个公式求这个式子模m的解: 分析:本题就是给的矩阵,所以非常显然是矩阵高速幂,但有一点.本题k的值非常大.所以要用 ...
- POJ 3233 Matrix Power Series 二分+矩阵乘法
链接:http://poj.org/problem?id=3233 题意:给一个N*N的矩阵(N<=30),求S = A + A^2 + A^3 + - + A^k(k<=10^9). 思 ...
随机推荐
- iOS快速开发框架--Bee Framework
Bee Framework是一款iOS快速开发框架,允许开发者使用Objective-C和XML/CSS来进行iPhone和iPad开发,由 Gavin Kwoe 和 QFish 开发并维护. 其早期 ...
- 51nod——2489 小b和灯泡(打表/平方数)
这题打表去找因子的个数然后判奇偶也行.预处理O(n) 扫一遍判断O(n). ; i * i <= n; i++){ for(int j = i; i * j <= n; j++){ div ...
- Linux菜鸟起飞之路【八】文本编辑器
在Linux中,文本编辑器有两个,VI和VIM.这两个编辑器用法差不多,但vim是vi的升级版,所以功能更强大一些. vim编辑器一共有三种模式,命令行模式.编辑模式和扩展模式. 进入vim界面,首先 ...
- 2-python基础
1.第一个程序 新建一个python文件,然后写上代码,运行即可 print("hello world") 2.变量 变量就是存东西,供后面来用的 变量名只能是 字母.数字或下划线 ...
- 使用kickstart + pxe 部署无人值守安装
1.作为中小公司的运维,经常会遇到一些机械式的重复工作,例如:有时公司同时上线几十甚至上百台服务器,而且需要我们在短时间内完成系统安装. 常规的安装系统方法: 光盘安装系统:一个服务器DVD内置光驱百 ...
- mysql替换表中某字段的某值
UPDATE `cases` SET `case_desc` = replace(`case_desc`, 'src="//tuku-assets.m.jia.com/assets/i ...
- 封装,封装的原理,Property ,setter ,deleter,多态,内置函数 ,__str__ , __del__,反射,动态导入模块
1,封装 ## 什么是封装 what 对外隐藏内部的属性,以及实现细节,并给外部提供使用的接口 学习封装的目的:就是为了能够限制外界对内部数据的方法 注意 :封装有隐藏的意思,但不是单纯的隐藏 pyt ...
- python并发编程之线程(创建线程,锁(死锁现象,递归锁),GIL锁)
什么是线程 进程:资源分配单位 线程:cpu执行单位(实体),每一个py文件中就是一个进程,一个进程中至少有一个线程 线程的两种创建方式: 一 from threading import Thread ...
- LeetCode(152) Maximum Product Subarray
题目 Find the contiguous subarray within an array (containing at least one number) which has the large ...
- python偏函数使用
偏函数依托于python functools模块.