bzoj 4589 Hard Nim —— FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589
先手必败,是一开始所有石子的异或和为0;
生成函数 (xpri[1] + xpri[2] + ... + xpri[k])n,pri[k] <= m
FWT求解即可;
而且不要快速幂里面每次变换来变换去的,只有快速幂前后需要变换。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=(<<),mod=1e9+;
int n,m,a[xn],b[xn],lim,inv,cnt,pri[xn];
bool vis[xn];
void init()
{
int mx=xn-;
for(int i=;i<=mx;i++)
{
if(!vis[i])pri[++cnt]=i;
for(int j=;j<=cnt&&(ll)i*pri[j]<=mx;j++)
{
vis[i*pri[j]]=;
if(i%pri[j]==)break;
}
}
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
ll pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
void fwt(int *a,int tp)
{
for(int mid=;mid<lim;mid<<=)
for(int j=,len=(mid<<);j<lim;j+=len)
for(int k=;k<mid;k++)
{
int x=a[j+k],y=a[j+mid+k];
a[j+k]=upt(x+y); a[j+mid+k]=upt(x-y);
if(tp==-)a[j+k]=(ll)a[j+k]*inv%mod,a[j+mid+k]=(ll)a[j+mid+k]*inv%mod;
}
}
int main()
{
inv=pw(,mod-); init();
while(scanf("%d%d",&n,&m)==)
{
memset(a,,sizeof a);
for(int i=;i<=m;i++)if(!vis[i])a[i]=;
memset(b,,sizeof b); b[]=;
lim=; while(lim<=m)lim<<=;
fwt(a,); fwt(b,);
for(;n;n>>=)
{
if(n&)for(int i=;i<lim;i++)b[i]=(ll)a[i]*b[i]%mod;
for(int i=;i<lim;i++)a[i]=(ll)a[i]*a[i]%mod;
}
fwt(b,-);
printf("%d\n",b[]);
}
return ;
}
bzoj 4589 Hard Nim —— FWT的更多相关文章
- bzoj 4589 Hard Nim——FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 一开始异或和为0的话先手必败.有 n 堆,每堆可以填那些数,求最后异或和为0的方案数, ...
- BZOJ.4589.Hard Nim(FWT)
题目链接 FWT 题意即,从所有小于\(m\)的质数中,选出\(n\)个数,使它们异或和为\(0\)的方案数. 令\(G(x)=[x是质数]\),其实就是对\(G(x)\)做\(n\)次异或卷积后得到 ...
- BZOJ 4589 Hard Nim ——FWT
[题目分析] 位运算下的卷积问题. FWT直接做. 但还是不太民白,发明者要承担泽任的. [代码] #include <cstdio> #include <cstring> # ...
- FWT [BZOJ 4589:Hard Nim]
4589: Hard Nim Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 275 Solved: 152[Submit][Status][Disc ...
- BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4589 [题目大意] 有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种 [题解 ...
- BZOJ 4589 Hard Nim(FWT加速DP)
题目链接 Hard Nim 设$f[i][j]$表示前$i$个数结束后异或和为$j$的方案数 那么$f[i][j] = f[i-1][j$ $\hat{}$ $k]$,满足$k$为不大于$m$的质数 ...
- bzoj 4589: Hard Nim【线性筛+FWT+快速幂】
T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...
- [BZOJ 4589]Hard Nim
Description 题库链接 两人玩 \(nim\) 游戏,\(n\) 堆石子,每堆石子初始数量是不超过 \(m\) 的质数,那么后手必胜的方案有多少种.对 \(10^9+7\) 取模. \(1\ ...
- bzoj 4589 FWT
#include<bits/stdc++.h> #define ll long long using namespace std; ; ; ; ; <<],b[<< ...
随机推荐
- Eclipse 视图
Eclipse 视图 关于视图 Eclipse视图允许用户以图表形式更直观的查看项目的元数据. 例如,项目导航视图中显示的文件夹和文件图形表示在另外一个编辑窗口中相关的项目和属性视图. Eclipse ...
- IOS_DatePicker_PickerView_SegmentControl_键盘处理
H:/0712/01_UIController_MJViewController.m // MJViewController.m // 01-总结复习 // Created by apple on 1 ...
- best-time-to-buy-and-sell-stock系列——先买入后卖出股票的最大值
1. Say you have an array for which the i th element is the price of a given stock on day i . If you ...
- Android——动画的分类
Android包含三种动画:View Animation, Drawable Animation, Property Animation(Android 3.0新引入). 1.View Animati ...
- Google Chrome浏览器之删除Goolge搜索结果重定向插件Remove Google Redirects
https://chrome.google.com/webstore/detail/remove-google-redirects/ccenmflbeofaceccfhhggbagkblihpoh?h ...
- Mataplotlib事例操作
刚开始需要的文件是和前边的两个连载一起的
- Autofac基本使用(转载)
AutoFac是.net平台下的IOC容器产品,它可以管理类之间的复杂的依赖关系.在使用方面主要是register和resolve两类操作. 这篇文章用单元测试的形式列举了AutoFac的常用使用方法 ...
- “懒”也要有境地---大部分程序猿都在的地方,再不来就out了。
别人在玩.你也在玩,为什么别人天天进步,职业晋升. 而你则原地踏步. 事实上你和他的距离仅仅有一个微信公众号的距离. 假设你说.我根本没有时间学习,不想看书,我仅仅想睡觉.我想你要接着往下看,由于.谁 ...
- db2 命令
很久没有些博客了.把以前用到的操作 DB2 的命令发表下可能有很多人已经发布了.就当是自己做下功课吧,以备有用之需. 1. 打开命令行窗口 #db2cmd 2. 打开控制中心 # db2cmd db2 ...
- 推荐一套免费跨平台的delphi 哈希及加密算法库
delphi 目前提供了部分哈希及加密算法. 但是不是特别全,今天给大家推荐一套免费的.跨平台的算法库. https://github.com/winkelsdorf/DelphiEncryption ...