题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1352

题意:中文题诶~

思路:exgcd

显然题目可以描述为:求a*x+b*y=n+1中满足  1 <= x,y <=n 的解数,

可以先通过exgcd求出一组a*x+b*y=gcd(a, b)的解 x1, y1,那么对应的a*x+b*y=n+1的解就是x1*(n/gcd(a, b)), y1*(n/(gcd(a, b)),

若能求出最小的x解的话,则每隔lcm(a, b), 隔lcm(a, b)出现一组满足条件的解,所以有ans=(n-1-x*a)/lcm(a,b) + 1;

先令x=x1%b,要尽量使x小,所以将大于b的部分放到b*y中去;

令temp=x*a, cc=lcm(a, b)

则有:

  while(temp<1){
            temp+=cc;
        }
        while(temp>0){
            temp-=cc;
        }
        temp+=cc;// 第一个大于0的a*x

将其直接化为公式计算:

  if(temp<1){
            k=ceil(double(1-temp)/cc);
            temp+=cc*k;
        }else{
            k=(temp-1)/cc;
            temp-=cc*k;
        }

答案也就显而易见了,注意中间可能会爆int....

代码:

 #include <iostream>
#include <stdio.h>
#include <math.h>
#define ll long long
using namespace std; int exgcd(ll a, ll b, ll& d, ll& x, ll& y){
if(b==){
x=, y=, d=a;
}else{
exgcd(b, a%b, d, y, x);
y-=(a/b)*x;
}
} int main(void){
int t;
ll n, a, b;
scanf("%d", &t);
while(t--){
scanf("%lld%lld%lld", &n, &a, &b);
ll x, y, d;
exgcd(a, b, d, x, y);
if((++n)%d){ //a*x+b*y=c 当且仅当c=k*gcd(a,b)时有整数解
printf("0\n");
continue;
}
x=x*(n/d)%b; //得到a*x+b*y=n+1的解,若x>b,将大于b的部分放到y*b中
ll cc=a*b/d; //lcm(a,b)
ll temp=x*a;
// while(temp<1){
// temp+=cc;
// }
// while(temp>0){
// temp-=cc;
// }
// temp+=cc;// 第一个大于0的a*x
ll k;
if(temp<){
k=ceil(double(-temp)/cc);
temp+=cc*k;
}else{
k=(temp-)/cc;
temp-=cc*k;
}
if(temp>=n){
printf("0\n");
}else{
printf("%lld\n", (n-temp-)/cc+);//前面给n加了1,但求出的b*y要<=n
}
}
return ;
}

51nod1352(exgcd)的更多相关文章

  1. 扩展欧几里得 exGCD

    Elementary Number Theory - Extended Euclid Algorithm Time Limit : 1 sec, Memory Limit : 65536 KB Jap ...

  2. NOIP2012同余方程[exgcd]

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开 输出格式: 输出只有一行,包含一个正整 ...

  3. exgcd,求乘法逆元

    procedure exgcd(a,b:int64); var t:longint; begin then begin x:=;y:=; exit; end else exgcd(b,a mod b) ...

  4. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  5. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  6. poj1061 Exgcd

    #include<iostream> #include<cstdio> #include<algorithm> #include<cmath> usin ...

  7. 51Nod 1256 乘法逆元 Label:exgcd

    1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K ...

  8. 【BZOJ2242】【SDoi2011】计算器 快速幂+EXGCD+BSGS

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  9. Poj 2115 C Looooops(exgcd变式)

    C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22704 Accepted: 6251 Descripti ...

随机推荐

  1. JAVA虚拟机、Dalvik虚拟机和ART虚拟机简要对照

    1.什么是JVM? JVM本质上就是一个软件,是计算机硬件的一层软件抽象,在这之上才干够运行Java程序,JAVA在编译后会生成相似于汇编语言的JVM字节码,与C语言编译后产生的汇编语言不同的是,C编 ...

  2. Pipeline inbound(netty源码7)

    netty源码死磕7  Pipeline 入站流程详解 1. Pipeline的入站流程 在讲解入站处理流程前,先脑补和铺垫一下两个知识点: (1)如何向Pipeline添加一个Handler节点 ( ...

  3. 动态绑定允许我们在程序运行的过程中动态给class加上功能,这在静态语言中很难实现

    https://www.liaoxuefeng.com/wiki/ # 正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法, # 这就是动态语言的 ...

  4. thinkphp权限管理Rbac实例

    首先,先建立Rbac那五张表(用户表,角色表,节点表,权限表,角色-用户表),后面四张可以在thinkphp中Rbac类里直接复制. 第二步,根据需求往那五张表里插入数据,注意:节点表里的节点名称一定 ...

  5. xml 基础属性

    xml属性 对应的方法 说明 android:alpha setAlpha(float) 设置组件的透明度(0——1) android:background setBackgroundResource ...

  6. php高级技巧总结

    通过对<深入理解PHP:高级技巧.面向对象与核心技术>这本书的学习,总结出常用的php高级技巧,也方便自己以后查阅;我认为该书是php高级教程的葵花宝典,哈哈.里面的内容很实用,尤其是在项 ...

  7. jenkins页面不刷新,设置tomcat缓存

    装jenkins的时候,部署后,访问jenkins页面,输入管理员密码后,出现jenkins页面停滞,看后台catlina日志,发现需要增加tomcat容器的cache,才能加载一些jar包,下面是设 ...

  8. dhclient命令

    语法:dhclient(选项)(参数) 选项0:指定dhcp客户但监听的端口号-d:总是以前台方式运行程序-q:安静模式,不打印任何错误的提示信息-r:释放ip地址 参数:网络接口:操作的网络接口 示 ...

  9. js 分享代码--完整示例代码

    <div class="bdsharebuttonbox" data-tag="share_1"> <a class="bds_ms ...

  10. springMVC之HttpServletRequest的getParameterMap()

    request.getParameterMap()的返回类型是Map类型的对象,也就是符合key-value的对应关系,但这里要注意的是,value的类型是String[],而不是String. 得到 ...