传送门

所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了……

首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号

边的期望次数是多少呢?可以先算出点的概率

$p(u,v)=\frac{p[u]}{d[u]}+\frac{p[v]}{d[v]}$

$p[u]$表示经过这个点的期望次数,$d[u]$表示这个点的度数

那么点的期望次数怎么求?

$p[u]=\sum_{(u,v)\in E}\frac{p[v]}{d[v]}$

然后发现这玩意儿会产生环,因为一个点的期望次数需要由它周围的点推出,他周围的点又需要它推出

那么我们考虑列方程,用高斯消元求解

代码如下

for(int i=;i<n;++i){
f[i][i]=1.0;
for(int j=head[i];j;j=Next[j])
if(ver[j]!=n)
f[i][ver[j]]=-/d[ver[j]];
}
f[][n]=;

其中$f[i][j]$表示从$j$转移到$i$的期望次数

这个方程实际上是$这个点的期望次数*1-所有相邻的点转移过来的期望次数=0$

然后因为一开始在第一个点,所以第一个点必定到,设为$f[1][n]=1$

 //minamoto
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while((ch=getc())>''||ch<'')
(ch=='-')&&(flag=true);
for(res=num;(ch=getc())<=''&&ch>='';res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;const double eps=1e-;
int ver[N*N*],Next[N*N*],from[N*N*],to[N*N*],head[N],tot,n,m;
double d[N],f[N][N],ans[N],sum,E[N*N*];
inline void add(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
void gauss(){
for(int i=;i<n;++i){
int k=i;
for(int j=i+;j<n;++j)
if(fabs(f[k][i])<fabs(f[j][i])) k=j;
if(k!=i) swap(f[i],f[k]);
double div=f[i][i];
for(int j=i;j<=n;++j) f[i][j]/=div;
for(int j=i+;j<n;++j){
double t=f[j][i];
for(int k=;k<n+;++k)
f[j][k]-=t*f[i][k];
}
}
for(int i=n-;i;--i){
for(int j=i+;j<n;++j)
f[i][n]-=f[i][j]*ans[j];
ans[i]=f[i][n]/f[i][i];
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
for(int i=,u,v;i<=m;++i){
u=read(),v=read();add(u,v),add(v,u);
d[u]+=,d[v]+=;
from[i]=u,to[i]=v;
}
for(int i=;i<n;++i){
f[i][i]=1.0;
for(int j=head[i];j;j=Next[j])
if(ver[j]!=n)
f[i][ver[j]]=-/d[ver[j]];
}
f[][n]=;
gauss();
for(int i=;i<=m;++i)
E[i]=ans[from[i]]/d[from[i]]+ans[to[i]]/d[to[i]];
sort(E+,E++m);
for(int i=;i<=m;++i) sum+=E[i]*(m-i+1.0);
printf("%.3lf\n",sum);
return ;
}

洛谷P3232 [HNOI2013]游走(高斯消元+期望)的更多相关文章

  1. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  2. 洛谷P3232[HNOI2013]游走

    有一个无向简单连通图,顶点从 \(1\) 编号到 \(n\),边从 \(1\) 编号到 \(m\) 小Z在该图上进行随机游走,初始时小Z在\(1\)号顶点,每一步小Z以相等的概率随机选 择当前顶点的某 ...

  3. [bzoj3143] [洛谷P3232] [HNOI2013] 游走

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  4. 洛谷 P3232 [HNOI2013]游走

    链接: P3232 题意: 和上次考试 T4 的简化且无修改一样,经典图上高斯消元求期望. 分析: 要求出每个点的期望出发次数 \(f_i\),每个点度数为 \(d_i\),有 \[f1=\sum\d ...

  5. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  6. Luogu3232 HNOI2013 游走 高斯消元、期望、贪心

    传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...

  7. BZOJ3143:[HNOI2013]游走(高斯消元)

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  8. 洛谷P2973 [USACO10HOL]赶小猪(高斯消元 期望)

    题意 题目链接 Sol 设\(f[i]\)表示炸弹到达\(i\)这个点的概率,转移的时候考虑从哪个点转移而来 \(f[i] = \sum_{\frac{f(j) * (1 - \frac{p}{q}) ...

  9. 洛谷3317 SDOI2014重建(高斯消元+期望)

    qwq 一开始想了个错的做法. 哎 直接开始说比较正确的做法吧. 首先我们考虑题目的\(ans\)该怎么去求 我们令\(x\)表示原图中的某一条边 \[ans = \sum \prod_{x\in t ...

随机推荐

  1. Spring MVC之简单入门

    一.Spring MVC简介: 1.什么是MVC 模型-视图-控制器(MVC)是一个众所周知的以设计界面应用程序为基础的设计模式.它主要通过分离模型(Model).视图(View)及控制器(Contr ...

  2. [haoi2011]a

    一次考试共有n个人参加,第i个人说:“有ai个人分数比我高,bi个人分数比我低.”问最少有几个人没有说真话(可能有相同的分数) 题解:首先,由每个人说的话的内容,我们可以理解为他处在ai+1,n-bi ...

  3. 配置Nginx四层负载均衡

    nginx 支持TCP转发和负载均衡的支持 实现下面的架构: 看配置: #user nobody; worker_processes 1; #error_log logs/error.log; #er ...

  4. 小程序observer函数的应用

    需求是这样的 就是构建月份的组件中,月份小于10月的时候 显示的数字都是一个位数,需要转换成两位数, 比如8月份是8 ,那就要转换为08 ,同理可得 其他低于十月份的月份也是要这样做: 打开组件的js ...

  5. .PHP生成静态html文件的方法

    1. [代码][PHP]代码     1,下面使用模版的一个方法!   <?php $fp = fopen ("templets.html","a");  ...

  6. codeforces B. Fox and Cross 解题报告

    题目链接:http://codeforces.com/problemset/problem/389/B 题目意思:给出一个由n行n列组成的board,其中'#'表示的一片地方恰好能画满十字架,画满的意 ...

  7. apache web 服务器

    0. 特性与特点 性能方面,apache 在设计时采用了以"进程"为基础的结构,自然进程比线程消耗了更多的系统开销,导致了 apache 在多处理器环境中性能有所下降: 因此,在对 ...

  8. Swift类和结构体

    在C++中,相信不会有太多人去详细考究结构体和类的区别,因为二者关系实在不大.但在Swift中,结构体和类的关系非常大,它们的组成部分都包括:初始化器.实例方法.实例属性.类型属性.类型方法等等:二者 ...

  9. Python之Numpy详细教程

    NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...

  10. bzoj 2169 连边——去重的思想

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2169 如果之前都去好重了,可以看作这次连的边只会和上一次连的边重复. 可以认为从上上次的状态 ...