Description

"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

 

Input

The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 

Output

For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 

Sample Input

4
10
20
 

Sample Output

5
42
627

这是一个整数划分,母函数是构造了一个多项式的乘法,然后指数为n的一项的系数就是划分数。效率是n*n*n。

递推稍微快一点,采用二位递推,p[i][j]表示i可以划分成j个数的划分个数。那么n的划分数就是sum(p[n][i])。

对于p[i][j]:

考虑最小的数,如果最小的数是1,就不再考虑这个1,那么就是p[i-1][j-1]。

如果最小数不是1,那么可以对每个数都减一,那么就是p[i-j][j]。

所以 p[i][j] = p[i-1][j-1]+(i-j >= 0 ? p[i-j][j] : 0);

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <algorithm>
#define LL long long using namespace std; int n, p[][]; void work()
{
memset(p, , sizeof(p));
p[][] = ;
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
p[i][j] = p[i-][j-]+(i-j >= ? p[i-j][j] : );
LL ans = ;
for (int i = ; i <= n; ++i)
ans += p[n][i];
printf("%I64d\n", ans);
} int main()
{
//freopen("test.in", "r", stdin);
while (scanf("%d", &n) != EOF)
work();
return ;
}

ACM学习历程—HDU1028 Ignatius and the Princess III(递推 || 母函数)的更多相关文章

  1. ACM学习历程—HDU1028 Ignatius and the Princess(组合数学)

    Ignatius and the Princess Description        "Well, it seems the first problem is too easy. I w ...

  2. ACM学习历程—51NOD 1412 AVL树的种类(递推)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1770 这是这次BSG白山极客挑战赛的B题.设p(i, j)表示节点个数为 ...

  3. ACM学习历程—SNNUOJ 1116 A Simple Problem(递推 && 逆元 && 组合数学 && 快速幂)(2015陕西省大学生程序设计竞赛K题)

    Description Assuming a finite – radius “ball” which is on an N dimension is cut with a “knife” of N- ...

  4. ACM学习历程——HDU4814 Golden Radio Base(数学递推) (12年成都区域赛)

    Description Golden ratio base (GRB) is a non-integer positional numeral system that uses the golden ...

  5. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU1028 Ignatius and the Princess III 【母函数模板题】

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  7. hdu1028 Ignatius and the Princess III(递归、DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  8. hdu1028 Ignatius and the Princess III

    这是道典型的母函数的题目,可以看看我的母函数这一标签上的另一道例题,里面对母函数做了较为详细的总结.这题仅贴上代码: #include"iostream" using namesp ...

  9. HDU-1028 Ignatius and the Princess III(生成函数)

    题意 给出$n$,问用$1$到$n$的数字问能构成$n$的方案数 思路 生成函数基础题,$x^{n}$的系数即答案. 代码 #include <bits/stdc++.h> #define ...

随机推荐

  1. windows平台下为Nginx反向代理(负载均衡)使用openssl增加HTTPS/SSL功能。

    1.准备好perl/openssl ActivePerl-5.12.2.1202-MSWin32-x86-293621.msi openssl-0.9.8k.tar.gz 编译 参考这个:http:/ ...

  2. tomcat报错: Error parsing HTTP request header

    Error parsing HTTP request header 在服务器上面集成项目的时候,tomcat报错,在往上面查找是因为eclipse运行的tomcat和服务器上面的tomcat版本不一致 ...

  3. 智能手机的耗电特征及APP耗电量测试的两种方法

    文章陈述了手机发展趋势及耗电特性,集中讨论了时下最为关心的智能手机耗电问题,并介绍了测量手机软件耗电量的两种方法.此外还解释了为何运营商此前会提出收取微信的费用,心跳机制是什么. 美国著名手机公司Pa ...

  4. HDFS源码分析数据块复制之PendingReplicationBlocks

    PendingReplicationBlocks实现了所有正在复制的数据块的记账工作.它实现以下三个主要功能: 1.记录此时正在复制的块: 2.一种对复制请求进行跟踪的粗粒度计时器: 3.一个定期识别 ...

  5. JAVA中两个Set比较找出交集、差集、并集

    当做到某些功能的时候,使用Set能够快速方便地将需要的类型以集合类型保存在一个变量中,Set是最简单的一种集合,集合中的对象不按特定的方式排序,并且没有重复对象. //两个Set比较找出交集.差集.并 ...

  6. Makefile浅尝

    [0]README makefile定义: 一个工程中的源文件不计其数,其按类型.功能.模块分别放在若干个目录中,makefile定义了一系列的规则来指定,哪些文件需要一先编译,哪些文件需要后编译,哪 ...

  7. 多媒体开发之sps---解析sps得到图像的宽高

    (1)通过块的宽高解析出真个h264的分辨率 如何解析SDP中包含的H.264的SPS和PPS串 http://www.pernet.tv.sixxs.org/thread-109-1-1.html ...

  8. Linux的经常使用命令(1) - 指定执行级别

    命令:init [0123456] 执行级别 0:关机 1:单用户 2:多用户状态没有网络服务 3:多用户状态有网络服务 4:系统未使用保留给用户 5:图形界面 6:系统重新启动 经常使用执行级别是3 ...

  9. python 基础 2.6 break用法

    python中最基本的语法格式大概就是缩进了.python中常用的循环:for循环,if循环.一个小游戏说明for,if ,break的用法. 猜数字游戏: 1.系统生成一个20以内的随机数 2.玩家 ...

  10. WebStorm 调试JavaScript

    WebStorm强大的调试JavaScript功能 Vue项目调试总结-WebStorm+Chrome调试 WebStorm+Chrome插件JetBrains IDE Support进行实时调试 W ...