Description

"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

 

Input

The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 

Output

For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 

Sample Input

4
10
20
 

Sample Output

5
42
627

这是一个整数划分,母函数是构造了一个多项式的乘法,然后指数为n的一项的系数就是划分数。效率是n*n*n。

递推稍微快一点,采用二位递推,p[i][j]表示i可以划分成j个数的划分个数。那么n的划分数就是sum(p[n][i])。

对于p[i][j]:

考虑最小的数,如果最小的数是1,就不再考虑这个1,那么就是p[i-1][j-1]。

如果最小数不是1,那么可以对每个数都减一,那么就是p[i-j][j]。

所以 p[i][j] = p[i-1][j-1]+(i-j >= 0 ? p[i-j][j] : 0);

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <algorithm>
#define LL long long using namespace std; int n, p[][]; void work()
{
memset(p, , sizeof(p));
p[][] = ;
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
p[i][j] = p[i-][j-]+(i-j >= ? p[i-j][j] : );
LL ans = ;
for (int i = ; i <= n; ++i)
ans += p[n][i];
printf("%I64d\n", ans);
} int main()
{
//freopen("test.in", "r", stdin);
while (scanf("%d", &n) != EOF)
work();
return ;
}

ACM学习历程—HDU1028 Ignatius and the Princess III(递推 || 母函数)的更多相关文章

  1. ACM学习历程—HDU1028 Ignatius and the Princess(组合数学)

    Ignatius and the Princess Description        "Well, it seems the first problem is too easy. I w ...

  2. ACM学习历程—51NOD 1412 AVL树的种类(递推)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1770 这是这次BSG白山极客挑战赛的B题.设p(i, j)表示节点个数为 ...

  3. ACM学习历程—SNNUOJ 1116 A Simple Problem(递推 && 逆元 && 组合数学 && 快速幂)(2015陕西省大学生程序设计竞赛K题)

    Description Assuming a finite – radius “ball” which is on an N dimension is cut with a “knife” of N- ...

  4. ACM学习历程——HDU4814 Golden Radio Base(数学递推) (12年成都区域赛)

    Description Golden ratio base (GRB) is a non-integer positional numeral system that uses the golden ...

  5. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU1028 Ignatius and the Princess III 【母函数模板题】

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  7. hdu1028 Ignatius and the Princess III(递归、DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  8. hdu1028 Ignatius and the Princess III

    这是道典型的母函数的题目,可以看看我的母函数这一标签上的另一道例题,里面对母函数做了较为详细的总结.这题仅贴上代码: #include"iostream" using namesp ...

  9. HDU-1028 Ignatius and the Princess III(生成函数)

    题意 给出$n$,问用$1$到$n$的数字问能构成$n$的方案数 思路 生成函数基础题,$x^{n}$的系数即答案. 代码 #include <bits/stdc++.h> #define ...

随机推荐

  1. python3 configparser对配置文件读写

    import configparser #read data from conf filecf=configparser.ConfigParser()cf.read("biosver.cfg ...

  2. unslider点导航不显示错误

    原因是,unslider插件只添加了dots文件并没有设置样式 解决办法 .banner { position: relative; width: 100%; overflow: auto; font ...

  3. uboot生成随机的MAC地址

    转载:http://blog.chinaunix.net/uid-25885064-id-3303132.html 在使用U-boot时,有个问题就是MAC地址的设置,如果MAC地址相同的两块开发板在 ...

  4. C++第4次实验(提高班)—继承和派生1

    从项目2和项目3中选1题作为实验.剩下2题写成作业. [项目1 - 龙三] 请在以下程序的横线处填上适当内容,以使程序完整,并使程序的输出为: Name: 龙三 Grade: 19 #include ...

  5. Oracle -- Create User

    CREATE USER hibernate IDENTIFIED BY "123" DEFAULT TABLESPACE "HIBERNATE" TEMPORA ...

  6. leetCode 90.Subsets II(子集II) 解题思路和方法

    Given a collection of integers that might contain duplicates, nums, return all possible subsets. Not ...

  7. django框架小技巧

    带命名空间的URL名字 多应用中路由定义,采用命名空间,防止冲突 url(r'^polls/', include('polls.urls', namespace="polls")) ...

  8. python的接口类的思考?

    1.java怎么实现多继承的功效:https://www.cnblogs.com/Berryxiong/p/6142735.html 2.python的接口类和抽象类:https://www.cnbl ...

  9. 九度OJ 1060:完数VS盈数 (数字特性)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5590 解决:2093 题目描述: 一个数如果恰好等于它的各因子(该数本身除外)子和,如:6=3+2+1.则称其为"完数" ...

  10. 九度OJ 1048:判断三角形类型 (基础题)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6794 解决:3361 题目描述: 给定三角形的三条边,a,b,c.判断该三角形类型. 输入: 测试数据有多组,每组输入三角形的三条边. 输 ...