题目描述

给出N个点,让你画一个最小的包含所有点的圆。

输入

先给出点的个数N,2<=N<=100000,再给出坐标Xi,Yi.(-10000.0<=xi,yi<=10000.0)

输出

输出圆的半径,及圆心的坐标

样例输入

6
8.0 9.0
4.0 7.5
1.0 2.0
5.1 8.7
9.0 2.0
4.5 1.0

样例输出

5.00
5.00 5.00


题解

随机增量法求最小圆覆盖裸题

求法:设初始圆为某空圆,先枚举第一个点,如果不在当前圆内,则令当前圆为这一个点的最小圆覆盖并枚举第二个点,如果不在则变为这两个点的最小圆覆盖并枚举第三个点,如果不在则变为这三个点的最小圆覆盖。

看上去是三重循环,但是实际上时间复杂度为期望$O(n)$的,证明参见 http://blog.csdn.net/lthyxy/article/details/6661250

需要先将点随机排序以防止被刻意卡掉。

另外求三个点的公共圆时可以直接套用坐标公式,参见代码。

#include <cmath>
#include <cstdio>
#include <algorithm>
#define N 100010
using namespace std;
const double eps = 1e-15;
double x[N] , y[N];
int id[N];
inline double squ(double x)
{
return x * x;
}
int main()
{
srand(20011011);
int n , i , j , k;
double px = 0 , py = 0 , r = 0 , x1 , x2 , x3 , y1 , y2 , y3;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%lf%lf" , &x[i] , &y[i]) , id[i] = i;
random_shuffle(id + 1 , id + n + 1);
for(i = 1 ; i <= n ; i ++ )
{
if(squ(px - x[id[i]]) + squ(py - y[id[i]]) > r + eps)
{
px = x[id[i]] , py = y[id[i]] , r = 0;
for(j = 1 ; j < i ; j ++ )
{
if(squ(px - x[id[j]]) + squ(py - y[id[j]]) > r + eps)
{
px = (x[id[i]] + x[id[j]]) / 2 , py = (y[id[i]] + y[id[j]]) / 2 , r = (squ(x[id[i]] - x[id[j]]) + squ(y[id[i]] - y[id[j]])) / 4;
for(k = 1 ; k < j ; k ++ )
{
if(squ(px - x[id[k]]) + squ(py - y[id[k]]) > r + eps)
{
x1 = x[id[i]] , x2 = x[id[j]] , x3 = x[id[k]];
y1 = y[id[i]] , y2 = y[id[j]] , y3 = y[id[k]];
px = (x1 * x1 * (y2 - y3) + x2 * x2 * (y3 - y1) + x3 * x3 * (y1 - y2) - (y1 - y2) * (y2 - y3) * (y3 - y1)) / (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2;
py = ((x1 - x2) * (x2 - x3) * (x3 - x1) - y1 * y1 * (x2 - x3) - y2 * y2 * (x3 - x1) - y3 * y3 * (x1 - x2)) / (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2;
r = squ(px - x1) + squ(py - y1);
}
}
}
}
}
}
printf("%.15lf\n%.15lf %.15lf\n" , sqrt(r) , px , py);
return 0;
}

【bzoj1336/1337/2823】[Balkan2002]Alien最小圆覆盖 随机增量法的更多相关文章

  1. 【BZOJ1336】[Balkan2002]Alien最小圆覆盖 随机增量法

    [BZOJ1336][Balkan2002]Alien最小圆覆盖 Description 给出N个点,让你画一个最小的包含所有点的圆. Input 先给出点的个数N,2<=N<=10000 ...

  2. BZOJ.2823.[AHOI2012]信号塔(最小圆覆盖 随机增量法)

    BZOJ 洛谷 一个经典的随机增量法,具体可以看这里,只记一下大体流程. 一个定理:如果一个点\(p\)不在点集\(S\)的最小覆盖圆内,那么它一定在\(S\bigcup p\)的最小覆盖圆上. 所以 ...

  3. [BZOJ2823][BZOJ1336][BZOJ1337]最小圆覆盖(随机增量法)

    算法介绍网上有很多,不解释了. 给出三点坐标求圆心方法:https://blog.csdn.net/liyuanbhu/article/details/52891868 记得先random_shuff ...

  4. hdu 3007【最小圆覆盖-随机增量法模板】

    #include<iostream> #include<cstdio> #include<cmath> #include<algorithm> usin ...

  5. BZOJ1336 Balkan2002 Alien最小圆覆盖 【随机增量法】*

    BZOJ1336 Balkan2002 Alien最小圆覆盖 Description 给出N个点,让你画一个最小的包含所有点的圆. Input 先给出点的个数N,2<=N<=100000, ...

  6. bzoj1336: [Balkan2002]Alien最小圆覆盖

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1336 1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 ...

  7. BZOJ 1337: 最小圆覆盖1336: [Balkan2002]Alien最小圆覆盖(随机增量法)

    今天才知道有一种东西叫随机增量法就来学了= = 挺神奇的= = A.令ci为包括前i个点的最小圆,若第i+1个点无法被ci覆盖,则第i+1个点一定在ci+1上 B.令ci为包括前i个点的最小圆且p在边 ...

  8. [BZOJ 1336] [Balkan2002] Alien最小圆覆盖 【随机增量法】

    题目链接:BZOJ - 1336 题目分析 最小圆覆盖有一个算法叫做随机增量法,看起来复杂度像是 O(n^3) ,但是可以证明其实平均是 O(n) 的,至于为什么我不知道= = 为什么是随机呢?因为算 ...

  9. 洛谷 P1742 最小圆覆盖 (随机增量)

    题目链接:P1742 最小圆覆盖 题意 给出 N 个点,求最小的包含所有点的圆. 思路 随机增量 最小圆覆盖一般有两种做法:随机增量和模拟退火.随机增量的精确度更高,这里介绍随机增量的做法. 先将所有 ...

随机推荐

  1. 欠采样(undersampling)和过采样(oversampling)会对模型带来怎样的影响

    项目中出现了二分类数据不平横问题,研究总结下对于类别不平横问题的处理经验: 为什么类别不平横会影响模型的输出? 许多模型的输出类别是基于阈值的,例如逻辑回归中小于0.5的为反例,大于则为正例.在数据不 ...

  2. 用@vue/cli发布npm包

    1.环境准备 安装node,npm,@vue/cli 2.初始化项目 用@vue/cli创建新项目 vue create mtest-ui 删除public,main.js,App.vue等无关文件, ...

  3. react的constructor和super的具体含义和使用

    1.constructor( )-----super( )的基本含义 这是ES6对类的默认方法,通过 new 命令生成对象实例时自动调用该方法.并且,该方法是类中必须有的,如果没有显示定义,则会默认添 ...

  4. HH的项链题解(离线思想+链表+树状数组)

    本人第一篇博客重磅推出!!! 希望各位朋友以后多多捧场也多给写意见(我个人喜欢把题解写得啰嗦一点,因为这样方便理解,各位巨佬勿喷) 来讲一道提高+/省选-的骚题:HH的项链(这个HH你理解成皇后呵呵哈 ...

  5. gitlab文件夹的权限不要随便给777

    gitlab  权限给到777   不一定有用

  6. 10.VUE学习之使用lodash库减少watch对后台请求的压力

    问题描述 使用watch监听库里word的值的变化,获取新值后,用oxios发送的ajax异步请求, 此时会多次发送请求,浪费服务器资料. 解决办法 使用lodash库里的_.debounce函数延缓 ...

  7. pycharm配置Git托管

    利用Pycharm和github管理代码转载https://www.cnblogs.com/feixuelove1009/p/5955332.html git教程--廖雪峰git教程  转载https ...

  8. GoF23种设计模式之创建型模式之单态模式

    1概述 保证一个类仅有一个实例,并提供一个访问它的全局访问点. 2适用性 1.当类只能有一个实例而且客户可以从一个总所周知的访问点访问它的时候. 2.当这个唯一实例应该是通过子类化可扩展的,并且客户应 ...

  9. Linux系统自启动脚

    只需编辑/etc/init.d/rc.local文件,在最后加上你的脚本即可. 比如:我已经编写了一个脚本shell.sh,存放在/home/mars704/Desktop/ 下面在终端输入 gedi ...

  10. python之随机数random模块

    random模块:用于生成随机数 import random #random模块:用于生成随机数 li = [] for i in range(7): r = random.randrange(0,3 ...