[BZOJ3598][SCOI2014]方伯伯的商场之旅(数位DP,记忆化搜索)
3598: [Scoi2014]方伯伯的商场之旅
Time Limit: 30 Sec Memory Limit: 64 MB
Submit: 449 Solved: 254
[Submit][Status][Discuss]Description
方伯伯有一天去参加一个商场举办的游戏。商场派了一些工作人员排成一行。每个人面前有几堆石子。说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的第 j 位。现在方伯伯要玩一个游戏,商场会给方伯伯两个整数 L,R。方伯伯要把位置在 [L, R]
中的每个人的石子都合并成一堆石子。每次操作,他可以选择一个人面前的两堆石子,将其中的一堆中的某些石子移动到另一堆,代价是移动的石子数量 *
移动的距离。商场承诺,方伯伯只要完成任务,就给他一些椰子,代价越小,给他的椰子越多。所以方伯伯很着急,想请你告诉他最少的代价是多少。例如:10 进制下的位置在 12312 的人,合并石子的最少代价为:1 * 2 + 2 * 1 + 3 * 0 + 1 * 1 + 2 * 2 = 9即把所有的石子都合并在第三堆Input
输入仅有 1 行,包含 3 个用空格分隔的整数 L,R,K,表示商场给方伯伯的 2 个整数,以及进制数Output
输出仅有 1 行,包含 1 个整数,表示最少的代价。
Sample Input
3 8 3Sample Output
5HINT
1 < = L < = R < = 10^15, 2 < = K < = 20
Source
一眼数位DP,但是具体实现感觉非常难以理解。
主要思路是:先默认每个人都将式子移到最低的那一位上去,然后从2开始枚举如果将其中一些人的石子从i-1移到i最终结果会优多少。
第一个DP就是普通的数位DP,但是第二个DP就有一个很难处理的问题:如何确定到底那些人的石子可以(或需要)从i-1移到i,因为每个人最终所选的那一位都不同。
这里有一种新型的记忆化搜索,dfs(i,sum,lim)表示(从高到低)前i位将(那些可以或需要移动的)人移动,且前i位已经变优了sum,所能得到的最终解(也就是最后最多能变优多少)。一般记搜都是形如dfs(i)+=dfs(i+1)+f(i)的(最终返回的sum),但这种记搜是dfs(i,sum,lim)+=dfs(i+1,sum+f[i],lim')(最终返回的仍然是sum,只是在递归底层被处理过的sum)。也就是说,普通记搜记录的是这个状态到目标状态(递归底层)的信息,而这种记录的是初始状态到这个状态的信息。
这种记搜实际上不应该从DP的角度去理解,而是应该从搜索的角度,实际上就是一个记录了中间状态(sum)的搜索,在底层进行处理。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
#define ll long long
using namespace std; int k,num[];
ll l,r,len,f[][**][]; ll dfs1(int pos,int sum,bool lim){
if (pos>len) return sum;
if (f[pos][sum][lim]!=-) return f[pos][sum][lim];
ll res=; int end=(lim?num[pos]:k-);
rep(i,,end) res+=dfs1(pos+,sum+i*(pos-),lim && (i==end));
return f[pos][sum][lim]=res;
} ll dfs2(int pos,int sum,int m,bool lim){
if (pos>len) return max(sum,);
if (f[pos][sum][lim]!=-) return f[pos][sum][lim];
ll res=; int end=(lim?num[pos]:k-);
rep(i,,end) res+=dfs2(pos+,sum+((pos<m)?-i:i),m,lim && (i==end));
return f[pos][sum][lim]=res;
} ll solve(ll n){
len=; while (n) num[++len]=n%k,n/=k;
reverse(num+,num+len+);
memset(f,-,sizeof(f));
ll res=dfs1(,,);
rep(i,,len) memset(f,-,sizeof(f)),res-=dfs2(,,i,);
return res;
} int main(){
freopen("bzoj3598.in","r",stdin);
freopen("bzoj3598.out","w",stdout);
scanf("%lld%lld%d",&l,&r,&k);
printf("%lld\n",solve(r)-solve(l-));
return ;
}
[BZOJ3598][SCOI2014]方伯伯的商场之旅(数位DP,记忆化搜索)的更多相关文章
- bzoj 3598 [Scoi2014]方伯伯的商场之旅——数位dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3598 TJ:https://www.cnblogs.com/Zinn/p/9351218.h ...
- BZOJ3598 SCOI2014方伯伯的商场之旅(数位dp)
看到数据范围就可以猜到数位dp了.显然对于一个数最后移到的位置应该是其中位数.于是考虑枚举移到的位置,那么设其左边和为l,左右边和为r,该位置数为p,则需要满足l+p>=r且r+p>=l. ...
- bzoj3598 [Scoi2014]方伯伯的商场之旅
数位dp,我们肯定枚举集合的位置,但是如果每次都重新dp的话会很麻烦,所以我们可以先钦定在最低位集合,dp出代价,然后再一步步找到正确的集合点,每次更改的代价也dp算就好了. #include < ...
- 2019.03.28 bzoj3598: [Scoi2014]方伯伯的商场之旅(带权中位数+数位dp)
传送门 题意咕咕咕自己读吧挺简单的 思路: 由带权中位数的性质可以得到对于每个数放在每个二进制位的代价一定是个单调或者单峰函数,因此我们先把所有的数都挪到第一个位置,然后依次向右枚举峰点(极值点)把能 ...
- bzoj 3598 [ Scoi 2014 ] 方伯伯的商场之旅 ——数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3598 数位DP...东看西看:http://www.cnblogs.com/Artanis/ ...
- 洛谷P3286 [SCOI2014]方伯伯的商场之旅
题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一 ...
- 【bzoj3598】: [Scoi2014]方伯伯的商场之旅
Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的 ...
- 【bzoj3598】 Scoi2014—方伯伯的商场之旅
http://www.lydsy.com/JudgeOnline/problem.php?id=3598 (题目链接) 题意 Solution 原来这就是极水的数位dp,呵呵= =,感觉白学了.htt ...
- [SCOI2014]方伯伯的商场之旅
Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的 ...
随机推荐
- 【BZOJ4237】稻草人 [分治][单调栈]
稻草人 Time Limit: 40 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description JOI村有一片荒地,上面竖着N个稻草 ...
- array_unshift() 函数
出处:http://www.w3school.com.cn/php/func_array_unshift.asp
- jQuery.pin.js笔记
jQuery.pin.js是一个把元素钉在页面上某个位置的插件,它能够将某个元素一直挂在一个固定的位置而不论滚动条是否滚动. 特点: 1. 可以钉住一个元素,主要作用就是滚动超出的时候不会隐藏而是一直 ...
- 47、Python面向对象中的继承有什么特点?
继承的优点: 1.建造系统中的类,避免重复操作. 2.新类经常是基于已经存在的类,这样就可以提升代码的复用程度. 继承的特点: 1.在继承中基类的构造(__init__()方法)不会被自动调用,它需要 ...
- Django之kindeditor
1.什么是kindeditor? KindEditor是一套开源的HTML可视化编辑器,主要用于让用户在网站上获得所见即所得编辑效果,兼容IE.Firefox.Chrome.Safari.Opera等 ...
- Coursera在线学习---第五节.Logistic Regression
一.假设函数与决策边界 二.求解代价函数 这样推导后最后发现,逻辑回归参数更新公式跟线性回归参数更新方式一摸一样. 为什么线性回归采用最小二乘法作为求解代价函数,而逻辑回归却用极大似然估计求解? 解答 ...
- supervisor 的使用
1.通过yum安装 supervisor: 2.supervisorctl 查看状态: 3.supervisor.d 下查看配置文件,修改命令和日志目录 4.tail -f /var/log/supe ...
- java版云笔记(五)
下来是创建笔记本,创建笔记,这个没什么难点和前面是一样的. 创建笔记本 首先点击"+"弹出添加笔记的对话框,然后点击确定按钮创建笔记本. //点击"+"弹出添加 ...
- web 端 gantt组件选型
gantt - 甘特图 甘特图(Gantt chart)又称为横道图.条状图(Bar chart).其通过条状图来显示项目,进度,和其他时间相关的系统进展的内在关系随着时间进展的情况.以提出者亨利·L ...
- 关于wordpress插件WP SMTP的邮箱设置
花了两天的时间把邮箱设置好了,把大概的步骤写下,放一下查到的资料. 1.去域名服务商那里添加MX记录 如下图的MX 2.测试主机是否禁用了mail()函数 参考链接wo ...