\(>Codeforces\space992 E. Nastya and King-Shamans<\)

题目大意 : 给你一个长度为 \(n\) 的序列,有 \(q\) 次操作,每一次操作将一个数 \(A_i\) 改为另外一个数。每一次操作结束时,你需要找出一个位置 \(x\) 满足 \(A_x = sum_{x-1}\) 其中 \(sum\) 表示前缀和

$n , q \leq 2 \times 10^5 \ 0 \leq A_i \leq 10^9 $

解题思路 :

博主亲测分块加均摊分析的做法会因为常数太大 \(TLE\) 掉,在此就不多讨论了

问题要求出满足 \(A_x = sum_{x-1}\) 的位置,这个可以转化为 \(sum_x = 2 \times sum_{x-1}\)

我们考虑从 \(A_{p=1}\) 开始跳,每一次跳到其后面一个最小的 \(k - 1\) ,满足\(sum_k \geq 2 \times sum_p\)

可以证明如果有答案且 \(sum_{ans} > 0\),那么答案一定在所有的 \(k\) 之中产生

不妨用反证法来证明,假设当且跳到点 \(k\) ,接下来选取的点是 \(k' \ (k < k')\) ,对于 \(k < i < k' - 1\)

如果说 \(i\) 是答案的话,设 \(y\) 为 第一个满足 $ sum_y \geq 2 \times sum_i$ 的点。

因为\(sum_y \geq sumk\) 所以必然有 $ y \geq k' $ ,如果 \(i < k' - 1\) 那么 $ y - i > 1$ , \(i\) 不是答案

所以证明了这样跳,如果有答案的话答案必然在跳到的点上

所以可以用树状数组维护前缀和,每一次暴力二分跳,跳 \(log\) 次就能跳完,总复杂度是\(O(nlog^3n)\)

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
if(f) x = -x;
}
#define N (300005)
#define int ll
ll c[N], a[N], n, q;
inline void add(int x, ll y){ for(int i = x; i <= n; i += i & -i) c[i] += y; }
inline ll sum(int x){ ll ans = 0; for(int i = x; i; i -= i & -i) ans += c[i]; return ans; }
inline void solve(){
int x = 1;
if(sum(1) == 0) return (void)( puts("1") );
while(x < n){
int l = x + 1, r = n, k = x, now = 2 * sum(x);
if(sum(x + 1) == now) return (void) (printf("%d\n", x + 1));
while(l <= r){
int mid = l + r >> 1;
if(sum(mid) < now) k = mid, l = mid + 1; else r = mid - 1;
}
if(k + 1 > n) break;
x = (k == x) ? k + 1 : k;
}
puts("-1");
}
main(){
read(n), read(q);
for(int i = 1; i <= n; i++) read(a[i]), add(i, a[i]);
for(int i = 1; i <= q; i++){
int x, y; read(x), read(y);
add(x, y - a[x]), a[x] = y, solve();
}
return 0;
}

Codeforces 992 E. Nastya and King-Shamans的更多相关文章

  1. codeforces A. Rook, Bishop and King 解题报告

    题目链接:http://codeforces.com/problemset/problem/370/A 题目意思:根据rook(每次可以移动垂直或水平的任意步数(>=1)),bishop(每次可 ...

  2. Codeforces 3A-Shortest path of the king(BFS打印路径)

    A. Shortest path of the king time limit per test 1 second memory limit per test 64 megabytes input s ...

  3. CodeForces 370A Rook, Bishop and King

    此题看似很简单,但实际上有不少细节,WA点不少.分情况处理即可. #include<cmath> #include<cstdio> #include<string> ...

  4. codeforces#1136 C. Nastya Is Transposing Matrices(找规律)

    题意:给出两个n*m的矩阵,每次操作可以让一个正方形矩阵行列交换.问,在无限次操作下,第一个矩阵能否变成第二个矩阵 分析:先把操作限定在2*2的矩阵中.这样对角线上的元素就可以随意交换.也就是说,如果 ...

  5. 【Codeforces 992B】Nastya Studies Informatics

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 因为gcd(a,b)=x 所以设a = nx b = mx 又有ab/gcd(a,b)=lcm(a,b)=y 则nmx = y 即n(m*x) ...

  6. Codeforces 992 范围内GCD,LCM要求找一对数 衣柜裙子期望

    A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) using namespace std ...

  7. [Educational Codeforces Round 16]A. King Moves

    [Educational Codeforces Round 16]A. King Moves 试题描述 The only king stands on the standard chess board ...

  8. Codeforces 1089K - King Kog's Reception - [线段树][2018-2019 ICPC, NEERC, Northern Eurasia Finals Problem K]

    题目链接:https://codeforces.com/contest/1089/problem/K time limit per test: 2 seconds memory limit per t ...

  9. Codeforces Beta Round #3 A. Shortest path of the king 水题

    A. Shortest path of the king 题目连接: http://www.codeforces.com/contest/3/problem/A Description The kin ...

随机推荐

  1. 51nod1110 距离之和最小 V3

    基准时间限制:1 秒 空间限制:131072 KB 分值: 40  X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].该点到其他点的带权距离 = 实际距离 * 权值.求X轴上 ...

  2. 写一个简易web服务器、ASP.NET核心知识(4)

    前言 昨天尝试了,基于对http协议的探究,我们用控制台写了一个简单的浏览器.尽管浏览器很low,但是对于http协议有个更好的理解. 说了上面这一段,诸位猜到我要干嘛了吗?(其实不用猜哈,标题里都有 ...

  3. phpcms直接取子栏目的内容、调用点击量的方法

    子栏目里面的内容可以直接取,而不需要通过循环. {$CATEGORYS[$catid][catname]}//取子栏目的栏目名称 {$CATEGORYS[$catid][image]}//取子栏目的栏 ...

  4. JS设计模式——2.初识接口

    什么是接口 接口提供了一种用以说明一个对象应该具有哪些方法的手段. 接口之利 1.接口具有自我描述性从而促进代码的重用 2.接口有助于稳定不同中的类之间的通信方式 3.测试和调试也变得更轻松 接口之弊 ...

  5. Java从零到企业级电商项目实战

    欢迎关注我的微信公众号:"Java面试通关手册"(坚持原创,分享各种Java学习资源,面试题,优质文章,以及企业级Java实战项目回复关键字免费领取)回复关键字:"电商项 ...

  6. Wireshark抓包保存文件(图片,视频,音频等)

    1.首先选择一个图片的分组 如图的9801 就是JPG 2.对下面的窗口里面选中JPEG File Interchange Format 右键选择 导出分组字节流 3.文件输入XXX.jpg,注意保存 ...

  7. 运维小知识之nginx---nginx配置Jboss集群负载均衡

      codyl 2016-01-26 00:53:00 浏览385 评论0 负载均衡 转自 运维小知识之nginx---nginx配置Jboss集群负载均衡-博客-云栖社区-阿里云https://yq ...

  8. C# 怎么显示中文格式的日期、星期几

    //该语句显示的为英文格式DateTime.Now.DayOfWeek.ToString(); //显示中文格式星期几 "星期" + DateTime.Now.ToString(& ...

  9. Photon3Unity3D.dll 解析三——OperationRequest、OperationResponse

    OperationRequest 代表Operation操作的Request,包含Code和Parameters OperationCode  Byte类型的值,代表操作,由LiteOpCode定义了 ...

  10. P3960 列队

    这是NOIP 2017最后一道题 不知道这道题有没有人代码写的和我一样麻烦. Solution 30分暴力 维护每行每列的元素. 每次删除一个元素的时候, 需要修改一行一列 因此复杂度上界\(O(nm ...