Python 在程序并行化方面多少有些声名狼藉。撇开技术上的问题,例如线程的实现和 GIL,我觉得错误的教学指导才是主要问题。常见的经典 Python 多线程、多进程教程多显得偏“重”。而且往往隔靴搔痒,没有深入探讨日常工作中最有用的内容。

传统的例子

简单搜索下“Python 多线程教程”,不难发现几乎所有的教程都给出涉及类和队列的例子:

#Example.py

'''

Standard Producer/Consumer Threading Pattern

'''

import time

import threading

import Queue

class Consumer(threading.Thread):

def __init__(self, queue):

threading.Thread.__init__(self)

self._queue = queue

def run(self):

while True:

# queue.get() blocks the current thread until

# an item is retrieved.

msg = self._queue.get()

# Checks if the current message is

# the "Poison Pill"

if isinstance(msg, str) and msg == 'quit':

# if so, exists the loop

break

# "Processes" (or in our case, prints) the queue item

print "I'm a thread, and I received %s!!" % msg

# Always be friendly!

print 'Bye byes!'

def Producer():

# Queue is used to share items between

# the threads.

queue = Queue.Queue()

# Create an instance of the worker

worker = Consumer(queue)

# start calls the internal run() method to

# kick off the thread

worker.start()

# variable to keep track of when we started

start_time = time.time()

# While under 5 seconds..

while time.time() - start_time < 5:

# "Produce" a piece of work and stick it in

# the queue for the Consumer to process

queue.put('something at %s' % time.time())

# Sleep a bit just to avoid an absurd number of messages

time.sleep(1)

# This the "poison pill" method of killing a thread.

queue.put('quit')

# wait for the thread to close down

worker.join()

if __name__ == '__main__':

Producer()

哈,看起来有些像 Java 不是吗?

我并不是说使用生产者/消费者模型处理多线程/多进程任务是错误的(事实上,这一模型自有其用武之地)。只是,处理日常脚本任务时我们可以使用更有效率的模型。

问题在于…

首先,你需要一个样板类;

其次,你需要一个队列来传递对象;

而且,你还需要在通道两端都构建相应的方法来协助其工作(如果需想要进行双向通信或是保存结果还需要再引入一个队列)。

worker 越多,问题越多

按照这一思路,你现在需要一个 worker 线程的线程池。下面是 一篇 IBM 经典教程 中的例子——在进行网页检索时通过多线程进行加速。

#Example2.py

'''

A more realistic thread pool example

'''

import time

import threading

import Queue

import urllib2

class Consumer(threading.Thread):

def __init__(self, queue):

threading.Thread.__init__(self)

self._queue = queue

def run(self):

while True:

content = self._queue.get()

if isinstance(content, str) and content == 'quit':

break

response = urllib2.urlopen(content)

print 'Bye byes!'

def Producer():

urls = [

'http://www.python.org', 'http://www.yahoo.com'

'http://www.scala.org', 'http://www.google.com'

# etc..

]

queue = Queue.Queue()

worker_threads = build_worker_pool(queue, 4)

start_time = time.time()

# Add the urls to process

for url in urls:

queue.put(url)

# Add the poison pillv

for worker in worker_threads:

queue.put('quit')

for worker in worker_threads:

worker.join()

print 'Done! Time taken: {}'.format(time.time() - start_time)

def build_worker_pool(queue, size):

workers = []

for _ in range(size):

worker = Consumer(queue)

worker.start()

workers.append(worker)

return workers

if __name__ == '__main__':

Producer()

这段代码能正确的运行,但仔细看看我们需要做些什么:构造不同的方法、追踪一系列的线程,还有为了解决恼人的死锁问题,我们需要进行一系列的 join 操作。这还只是开始……

至此我们回顾了经典的多线程教程,多少有些空洞不是吗?样板化而且易出错,这样事倍功半的风格显然不那么适合日常使用,好在我们还有更好的方法。

何不试试 map

map 这一小巧精致的函数是简捷实现 Python 程序并行化的关键。map 源于 Lisp 这类函数式编程语言。它可以通过一个序列实现两个函数之间的映射。

urls = ['http://www.yahoo.com', 'http://www.reddit.com']

results = map(urllib2.urlopen, urls)

上面的这两行代码将 urls 这一序列中的每个元素作为参数传递到 urlopen 方法中,并将所有结果保存到 results 这一列表中。其结果大致相当于:

results = []

for url in urls:

results.append(urllib2.urlopen(url))

map 函数一手包办了序列操作、参数传递和结果保存等一系列的操作。

为什么这很重要呢?这是因为借助正确的库,map 可以轻松实现并行化操作。

在 Python 中有个两个库包含了 map 函数: multiprocessing 和它鲜为人知的子库 multiprocessing.dummy.

这里多扯两句: multiprocessing.dummy? mltiprocessing 库的线程版克隆?这是虾米?即便在 multiprocessing 库的官方文档里关于这一子库也只有一句相关描述。而这句描述译成人话基本就是说:”嘛,有这么个东西,你知道就成.”相信我,这个库被严重低估了!

dummy 是 multiprocessing 模块的完整克隆,唯一的不同在于 multiprocessing 作用于进程,而 dummy 模块作用于线程(因此也包括了 Python 所有常见的多线程限制)。

所以替换使用这两个库异常容易。你可以针对 IO 密集型任务和 CPU 密集型任务来选择不同的库。

动手尝试

使用下面的两行代码来引用包含并行化 map 函数的库:

from multiprocessing import Pool

from multiprocessing.dummy import Pool as ThreadPool

实例化 Pool 对象:

pool = ThreadPool()

这条简单的语句替代了 example2.py 中 build_worker_pool 函数 7 行代码的工作。它生成了一系列的 worker 线程并完成初始化工作、将它们储存在变量中以方便访问。

Pool 对象有一些参数,这里我所需要关注的只是它的第一个参数:processes. 这一参数用于设定线程池中的线程数。其默认值为当前机器 CPU 的核数。

一般来说,执行 CPU 密集型任务时,调用越多的核速度就越快。但是当处理网络密集型任务时,事情有有些难以预计了,通过实验来确定线程池的大小才是明智的。

pool = ThreadPool(4) # Sets the pool size to 4

线程数过多时,切换线程所消耗的时间甚至会超过实际工作时间。对于不同的工作,通过尝试来找到线程池大小的最优值是个不错的主意。

创建好 Pool 对象后,并行化的程序便呼之欲出了。我们来看看改写后的 example2.py

import urllib2

from multiprocessing.dummy import Pool as ThreadPool

urls = [

'http://www.python.org',

'http://www.python.org/about/',

'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',

'http://www.python.org/doc/',

'http://www.python.org/download/',

'http://www.python.org/getit/',

'http://www.python.org/community/',

'https://wiki.python.org/moin/',

'http://planet.python.org/',

'https://wiki.python.org/moin/LocalUserGroups',

'http://www.python.org/psf/',

'http://docs.python.org/devguide/',

'http://www.python.org/community/awards/'

# etc..

]

# Make the Pool of workers

pool = ThreadPool(4)

# Open the urls in their own threads

# and return the results

results = pool.map(urllib2.urlopen, urls)

#close the pool and wait for the work to finish

pool.close()

pool.join()

实际起作用的代码只有 4 行,其中只有一行是关键的。map 函数轻而易举的取代了前文中超过 40 行的例子。为了更有趣一些,我统计了不同方法、不同线程池大小的耗时情况。

# results = []

# for url in urls:

#   result = urllib2.urlopen(url)

#   results.append(result)

# # ------- VERSUS ------- #

# # ------- 4 Pool ------- #

# pool = ThreadPool(4)

# results = pool.map(urllib2.urlopen, urls)

# # ------- 8 Pool ------- #

# pool = ThreadPool(8)

# results = pool.map(urllib2.urlopen, urls)

# # ------- 13 Pool ------- #

# pool = ThreadPool(13)

# results = pool.map(urllib2.urlopen, urls)

结果:

#        Single thread:  14.4 Seconds

#               4 Pool:   3.1 Seconds

#               8 Pool:   1.4 Seconds

#              13 Pool:   1.3 Seconds

很棒的结果不是吗?这一结果也说明了为什么要通过实验来确定线程池的大小。在我的机器上当线程池大小大于 9 带来的收益就十分有限了。

另一个真实的例子

生成上千张图片的缩略图

这是一个 CPU 密集型的任务,并且十分适合进行并行化。

基础单进程版本

import os

import PIL

from multiprocessing import Pool

from PIL import Image

SIZE = (75,75)

SAVE_DIRECTORY = 'thumbs'

def get_image_paths(folder):

return (os.path.join(folder, f)

for f in os.listdir(folder)

if 'jpeg' in f)

def create_thumbnail(filename):

im = Image.open(filename)

im.thumbnail(SIZE, Image.ANTIALIAS)

base, fname = os.path.split(filename)

save_path = os.path.join(base, SAVE_DIRECTORY, fname)

im.save(save_path)

if __name__ == '__main__':

folder = os.path.abspath(

'11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')

os.mkdir(os.path.join(folder, SAVE_DIRECTORY))

images = get_image_paths(folder)

for image in images:

create_thumbnail(Image)

上边这段代码的主要工作就是将遍历传入的文件夹中的图片文件,一一生成缩略图,并将这些缩略图保存到特定文件夹中。

这我的机器上,用这一程序处理 6000 张图片需要花费 27.9 秒。

如果我们使用 map 函数来代替 for 循环:

import os

import PIL

from multiprocessing import Pool

from PIL import Image

SIZE = (75,75)

SAVE_DIRECTORY = 'thumbs'

def get_image_paths(folder):

return (os.path.join(folder, f)

for f in os.listdir(folder)

if 'jpeg' in f)

def create_thumbnail(filename):

im = Image.open(filename)

im.thumbnail(SIZE, Image.ANTIALIAS)

base, fname = os.path.split(filename)

save_path = os.path.join(base, SAVE_DIRECTORY, fname)

im.save(save_path)

if __name__ == '__main__':

folder = os.path.abspath(

'11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')

os.mkdir(os.path.join(folder, SAVE_DIRECTORY))

images = get_image_paths(folder)

pool = Pool()

pool.map(creat_thumbnail, images)

pool.close()

pool.join()

5.6 秒!

虽然只改动了几行代码,我们却明显提高了程序的执行速度。在生产环境中,我们可以为 CPU 密集型任务和 IO 密集型任务分别选择多进程和多线程库来进一步提高执行速度——这也是解决死锁问题的良方。此外,由于 map 函数并不支持手动线程管理,反而使得相关的 debug 工作也变得异常简单。

到这里,我们就实现了(基本)通过一行 Python 实现并行化。

原文链接

Python黑魔法,一行实现并行化的更多相关文章

  1. Python 黑魔法 --- 描述器(descriptor)

    Python 黑魔法---描述器(descriptor) Python黑魔法,前面已经介绍了两个魔法,装饰器和迭代器,通常还有个生成器.生成器固然也是一个很优雅的魔法.生成器更像是函数的行为.而连接类 ...

  2. (转)Python黑魔法 --- 异步IO( asyncio) 协程

    转自:http://www.jianshu.com/p/b5e347b3a17c?from=timeline Python黑魔法 --- 异步IO( asyncio) 协程 作者 人世间 关注 201 ...

  3. python 黑魔法 ---上下文管理器(contextor)

    所谓上下文 计算机上下文(Context)对于我而言,一直是一个很抽象的名词.就像形而上一样,经常听见有人说,但是无法和现实认知世界相结合. 最直观的上下文,莫过于小学的语文课,经常会问联系上下文,推 ...

  4. Python 黑魔法(持续收录)

    Python 黑魔法(持续收录) zip 对矩阵进行转置 a = [[1, 2, 3], [4, 5, 6]] print(list(map(list, zip(*a)))) zip 反转字典 a = ...

  5. python 黑魔法收集--已结

    awesome python 中文大全 Fabric , pip, virtualenv 内建函数好文 awesome python 奇技淫巧 一句话求阶乘 from functools import ...

  6. python黑魔法之metaclass

    最近了解了一下python的metaclass,在学习的过程中,把自己对metaclass的理解写出来和大家分享. 首先, metaclass 中文叫元类,这个元类怎么来理解呢.我们知道,在Pytho ...

  7. 转--python 黑魔法2

    Python 高效编程小技巧 个人博客:临风|刀背藏身 Python 一直被我拿来写算法题,小程序,因为他使用起来太方便了,各种niubi闪闪的技能点也在写算法的过程中逐渐被挖掘到,感谢万能的谷哥度娘 ...

  8. 【451】python 同一行打印进度条

    参考:Python3 Print 同一行打印显示进度条效果 参考:\r\n, \r and \n what is the difference between them? [duplicate] 参考 ...

  9. python技巧一行命令搞定局域网共享

    python超强玩法--一行命令搞定局域网共享 ​ 今天刷到python的一个新玩法,利用python自带的http服务,快速创建局域网共享服务,命令如下: python -m thhp.server ...

随机推荐

  1. ODS与数据仓库

    数据仓库是目前主要的数据存储体系.数据仓库之增W.H.Inmon认为,数据仓库是指支持管理决策过程的.面向主题的.集成的.随时间而变的.持久的数据的集合.简单地说,一个数据仓库就一个自数据库的商业应用 ...

  2. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  3. c++中三种参数引用方式

    传值调用 是默认的参数传递机制,实参会复制给形参,调用的语义是每次取得实参的副本并将该复本用作形参,即会有复本的开销,并且不改变实参的值. 适用于:传值调用用于不应该被函数改变的小型对象. 例子:vo ...

  4. add-strings

    https://leetcode.com/problems/add-strings/ package com.company; import java.util.LinkedList; import ...

  5. CUDA,cudnn一些常见版本问题

    - 最好的方法是官网说明: https://tensorflow.google.cn/install/source_windows Version Python version Compiler Bu ...

  6. 论#include

    1.#include " "与#include <> #include " "表示预编译命令源程序在当前项目下寻找头文件,如果找不到,再到标准头文件 ...

  7. Thinkphp学习笔记7-输入变量

    在Web开发过程中,我们经常需要获取系统变量或者用户提交的数据,这些变量数据错综复杂,而且一不小心就容易引起安全隐患,但是如果利用好ThinkPHP提供的变量获取功能,就可以轻松的获取和驾驭变量了. ...

  8. HashMap的工作原理--重点----数据结构示意图的理解

    转载:http://blog.csdn.net/qq_27093465/article/details/52209814 HashMap的工作原理是近年来常见的Java面试题.几乎每个Java程序员都 ...

  9. (剑指Offer)面试题49:把字符串转换为整数

    题目: 将一个字符串转换成一个整数,要求不能使用字符串转换整数的库函数. 思路: 考虑+.-.空格.非数字字符,以及溢出问题 代码: #include <iostream> using n ...

  10. (队列的应用5.3.3)POJ 3125 Printer Queue(优先队列的使用)

    /* * POJ_3125.cpp * * Created on: 2013年10月31日 * Author: Administrator */ #include <iostream> # ...