调整的R方_如何选择回归模型
python风控建模实战lendingClub(博主录制,catboost,lightgbm建模,2K超清分辨率)
https://study.163.com/course/courseMain.htm?courseId=1005988013&share=2&shareId=400000000398149

1.选择最简单模型
如果不能满足:
增加参数,增加R**2
判断是否overfittiing
调整R方,BIC,AIC(选择较小BIC或AIC值)
R方不能比较参数不同模型,但调整后R方可以比较不同参数模型
如果添加一个新的变量,但调整R方变小,这个变量就是多余的
如果添加一个新的变量,但调整R方变大,这个变量就是有用的
R^2很小得谨慎,说明你选的解释变量解释能力不足,有可能有其他重要变量被纳入到误差项。可尝试寻找其他相关变量进行多元回归
这个问题在伍德里奇的书里有说明,可绝系数只是判断模型优劣的指标之一,而不是全部,特别是当使用微观数据,样本量比较大的时候,可绝系数可以很小,但这并不能表示模型就差。
显著但是R值小,要考虑不同的专业背景。
有的专业确实比较小,楼主的例子,我觉得这个大小就能接受了。
态度与行为之间的影响因素非常多,态度能解释行为11-15%已经不小了。
F检验是对整个模型而已的,看是不是自变量系数不全为0,而t检验则是分别针对某个自变量的,看每个自变量是否有显著预测效力。
调整R方VS样本量VS变量数量
样本量越大,调整的R方惩罚机制越小,调整的R方越大
样本量越小,调整的R方惩罚机制越大,调整的R方越小
变量越多,惩罚机制越严重,调整R方越小
变量越少,惩罚机制越严小,调整R方越大
n=13 样本
p=2 变量数量
adjR2=rSquared-(1-rSquared)*((p-1)/(n-p))=0.63-(1-0.63)
rSquared=0.63109603807606962
rSquared_adj=0.59755931426480324
n=13 样本
n越大,(n-p)大,(p-1)/(n-p)越小,(1-rSquared)*((p-1)/(n-p))越小,rSquared-(1-rSquared)*((p-1)/(n-p))越大,即样本量越大,调整R方越大,变量解释力度越大。
p=2 变量数量
参数多,p大,(P-1)越大,(n-p)越小
,(p-1)/(n-p)越大,
rSquared-(1-rSquared)*((p-1)/(n-p)) 越小,即adjR2越小。所以变量越多,惩罚机制越严重,调整R方越小
测试Python脚本
导入excel数据

import pandas as pd
df=pd.read_excel("土壤沉淀物吸收能力采样数据-不存在共线性.xlsx")
array_values=df.values
x1=[i[0] for i in array_values]
x2=[i[1] for i in array_values] df = pd.DataFrame({'x':x1, 'y':x2})
# Fit the model
model = ols("y~x", df).fit()
rSquared_adj=model.rsquared_adj
rSquared=model.rsquared n=13 #样本
p=2 #变量数量
adjR2=rSquared-(1-rSquared)*((p-1)/(n-p)) #最终adjR2和rSquared_adj是相等的

n为样本个数,p为变量数





python信用评分卡建模(附代码,博主录制)

微信扫二维码,免费学习更多python资源

调整的R方_如何选择回归模型的更多相关文章
- 如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或 ...
- R in action读书笔记(11)-第八章:回归-- 选择“最佳”的回归模型
8.6 选择“最佳”的回归模型 8.6.1 模型比较 用基础安装中的anova()函数可以比较两个嵌套模型的拟合优度.所谓嵌套模型,即它的一 些项完全包含在另一个模型中 用anova()函数比较 &g ...
- 【机器学习与R语言】6-线性回归
目录 1.理解回归 1)简单线性回归 2)普通最小二乘估计 3)相关系数 4)多元线性回归 2.线性回归应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高模型性能 1.理 ...
- 数据挖掘-diabetes数据集分析-糖尿病病情预测_线性回归_最小平方回归
# coding: utf-8 # 利用 diabetes数据集来学习线性回归 # diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况. # 数据 ...
- R 读取回归模型的信息
参考博客: http://blog.sina.com.cn/s/blog_8f5b2a2e0101fmiq.html https://blog.csdn.net/huangyouyu523/artic ...
- R语言 我要如何开始R语言_数据分析师
R语言 我要如何开始R语言_数据分析师 我要如何开始R语言? 很多时候,我们的老板跟我们说,这个东西你用R语言去算吧,Oh,My god!什么是R语言?我要怎么开始呢? 其实回答这个问题很简单,首先, ...
- 吴裕雄 python 机器学习——模型选择回归问题性能度量
from sklearn.metrics import mean_absolute_error,mean_squared_error #模型选择回归问题性能度量mean_absolute_error模 ...
- SPSS分析技术:无序多元Logistic回归模型;美国总统大选的预测历史及预测模型
SPSS分析技术:无序多元Logistic回归模型:美国总统大选的预测历史及预测模型 在介绍有序多元Logistic回归分析的理论基础时,介绍过该模型公式有一个非常重要的假设,就是自变量对因变量多个类 ...
- SPSS数据分析—配对Logistic回归模型
Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配 ...
随机推荐
- OA_1界面
<%@ page language="java" contentType="text/html;charset=GB18030" pageEncoding ...
- lintcode-442-实现 Trie
442-实现 Trie 实现一个 Trie,包含 insert, search, 和 startsWith 这三个方法. 注意事项 你可以假设所有的输入都是小写字母a-z. 样例 insert(&qu ...
- 实现Spring管理struts的Action
struts2和spring的整合,关键点在于struts2中的action要纳入spring容器的管理中成为一个bean. 可以在struts2中配置: <struts> ...
- caffe环境搭建笔记
首先安装以下库或软件 sudo apt-get install gitsudo apt-get install libprotobuf-dev libleveldb-dev l ...
- 七周七语言之用Io编写领域特定语言
如果你想获得更好的阅读体验,可以前往我在 github 上的博客进行阅读,http://lcomplete.github.io/blog/2013/06/05/sevenlang-io/. Io 语言 ...
- 判断字符串中是否存在的几种方案:string.indexof、string.contains、list.contains、list.any几种方式效率对比
我们在做项目时,可能会遇到这样的需求,比如判断,1,2,3,33,22,123, 中是否存在,3,. var str=",1,2,3,33,22,123,"; 一般有几种方式: 1 ...
- 6/2 sprint2 看板和燃尽图的更新
- 基于图形学混色问题OpenGl的收获
void myDisplay(void) {glClearColor(0.0f,0.0f,0.0f,1.0f); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_B ...
- 《构建之法》第6~7章读后感和对Scrum的理解
第6章 敏捷流程 “敏捷流程”是一系列价值观和方法论的集合.从2001年开始,一些软件界的专家开始倡导“敏捷”的价值观和流程, 他们肯定了流行做法的价值,但是强调敏捷的做法更能带来价值. 敏捷开发原则 ...
- <问吧>调查问卷心得体会
<问吧>调查问卷心得与体会 在这之前,我们已经组成了一个六个人的小团队---“走廊奔跑队”,我们这次做的这个项目的名称是:问吧.在项目实施之前,我们必做的一步就是需求分析,目的就是充分了解 ...