ACODE - Alphacode

Alice and Bob need to send secret messages to each other and are discussing ways to encode their messages:

Alice: “Let’s just use a very simple code: We’ll assign ‘A’ the code word 1, ‘B’ will be 2, and so on down to ‘Z’ being assigned 26.”

Bob: “That’s a stupid code, Alice. Suppose I send you the word ‘BEAN’ encoded as 25114. You could decode that in many different ways!”

Alice: “Sure you could, but what words would you get? Other than ‘BEAN’, you’d get
‘BEAAD’, ‘YAAD’, ‘YAN’, ‘YKD’ and ‘BEKD’. I think you would be able to figure out the
correct decoding. And why would you send me the word ‘BEAN’ anyway?”

Bob: “OK, maybe that’s a bad example, but I bet you that if you got a string of length 5000
there would be tons of different decodings and with that many you would find at least two
different ones that would make sense.”

Alice: “How many different decodings?”

Bob: “Jillions!”

For some reason, Alice is still unconvinced by Bob’s argument, so she requires a program that will
determine how many decodings there can be for a given string using her code.

Input

Input will consist of multiple input sets. Each set will consist of a single line of at most 5000 digits representing a
valid encryption (for example, no line will begin with a 0). There will be no spaces between the digits.
An input line of ‘0’ will terminate the input and should not be processed.

Output

For each input set, output the number of possible decodings for the input string. All answers will be
within the range of a 64 bit signed integer.

Example

Input:

25114
1111111111
3333333333
0 Output: 6
89
1
  递推方程很容易得到,一个重要的问题是对'0'的处理,譬如 "90" "1001" ,显然这些都是非法数据,我们在处理时要当心。
 #include<bits/stdc++.h>
using namespace std;
typedef unsigned long long LL;
char s[];
LL f[];
int main()
{
int n,i,j,k;
while(){
scanf("%s",s+);
n=strlen(s+);
if(n == && s[] == '') break;
f[]=;
for(i=;i<=n;++i){
f[i]=;
if(s[i]!='') f[i]+=f[i-];
if(i> && s[i-]=='') f[i]+=f[i-];
if(i> && s[i-]=='' && s[i]>=''&& s[i]<='') f[i]+=f[i-];
}
cout<<f[n]<<endl;
}
return ;
}

SPOJ-394-ACODE - Alphacode / dp的更多相关文章

  1. 【BZOJ3769】spoj 8549 BST again DP(记忆化搜索?)

    [BZOJ3769]spoj 8549 BST again Description 求有多少棵大小为n的深度为h的二叉树.(树根深度为0:左右子树有别:答案对1000000007取模) Input 第 ...

  2. spoj 394

    每段可以连续的串的可能性是个Fibonacci数列   但是直接dp更好吧~~ #include <cstdio> #include <cstring> using names ...

  3. spoj Balanced Numbers(数位dp)

    一个数字是Balanced Numbers,当且仅当组成这个数字的数,奇数出现偶数次,偶数出现奇数次 一下子就相到了三进制状压,数组开小了,一直wa,都不报re, 使用记忆化搜索,dp[i][s] 表 ...

  4. [spoj Favorite Dice ][期望dp]

    (1)https://vjudge.net/problem/SPOJ-FAVDICE 题意:有一个n面的骰子,每一面朝上的概率相同,求所有面都朝上过至少一次的总次数期望. 题解:令dp[i]表示 i ...

  5. poj 2033 Alphacode (dp)

    Alphacode Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13378   Accepted: 4026 Descri ...

  6. SPOJ 423 Assignments 状态DP

    这个题目搁置了这么久,终于搞完了. 给n个人分配n个课程,已经告诉了你n个人对哪几门感兴趣,问最多有多少种分配方式 我刚开始都没找到这怎么还可以状态dp,哪来的状态转移,想用暴力DFS,果断TLE的妥 ...

  7. SPOJ Favorite Dice(概率dp)

    题意: 一个骰子,n个面,摇到每一个面的概率都一样.问你把每一个面都摇到至少一次需要摇多少次,求摇的期望次数 题解: dp[i]:已经摇到i个面,还需要摇多少次才能摇到n个面的摇骰子的期望次数 因为我 ...

  8. spoj 1812 LCS2(SAM+DP)

    [题目链接] http://www.spoj.com/problems/LCS2/en/ [题意] 求若干个串的最长公共子串. [思路] SAM+DP 先拿个串建个SAM,然后用后面的串匹配,每次将所 ...

  9. 【SPOJ 2319】 BIGSEQ - Sequence (数位DP+高精度)

    BIGSEQ - Sequence You are given the sequence of all K-digit binary numbers: 0, 1,..., 2K-1. You need ...

随机推荐

  1. css图片上悬浮文字(丝带效果)实现

    首先看效果 思路:1.去掉“丝带“菱角使用的是overflow: hidden; 2.通过z-index降低图片的优先级或者调高“丝带”优先级来实现覆盖效果(z-index需要写在有position的 ...

  2. Python 学习笔记之random 模块

    要使用Random 模块里的一些随机数方法需要先导入random 模块. 下面是几种常用的随机数方法: 以生成随机8位密码,包括大小写字母,数字为例 pwd = ''.join(random.samp ...

  3. django【F和Q】

    一.F 案例每人增加500工资 ORM:UserInfo.objects.filter().update(salary=500) 这不行吧 SQL: update userinfo set salar ...

  4. Delphi FastReport动态加载图片 (转载)

    以前用FastReport制作报表,从来没有打印过图片,这段时间做了个打印个人简历的程序,需要打印照片.试着在frreport模板中加载照片没 问题,可是想要动态的装载照片要怎么做呢,我的要求是将个人 ...

  5. 微信小程序组件loading

    操作反馈loading:官方文档 Demo Code: Page({ data: { hidden: true }, loadingChange: function () { console.log( ...

  6. iis 反向代理 组件 Application Request Route

    安装后要重启服务器. 不然 IIS 不会生效.

  7. ZJOI 2009 假期的宿舍 最大匹配

    主要是main()中的处理,接下来就是二分匹配的模板题了 #include<cstdio> #include<cstring> #define maxn 110 using n ...

  8. Drools 规则引擎环境搭建

    一.关于 drools 规则引擎 前面写过一篇 Drools 规则引擎相关的文章,这篇文章主要记录一下规则引擎的环境搭建和简单示例.不熟悉 drools 的朋友可以看看这篇文章: 自己写个 Drool ...

  9. 1-CommonJs

    诞生背景JS没有模块系统.标准库较少.缺乏包管理工具:前端端没有模块化编程还可以,因为前端逻辑没那么复杂,可以工作下去,在服务器端逻辑性那么强必须要有模块为了让JS可以在任何地方运行,以达到Java. ...

  10. 机器学习实战python3 决策树ID3

    代码及数据:https://github.com/zle1992/MachineLearningInAction 决策树 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特 ...