hdu4035之经典慨率DP
Maze
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 1419 Accepted Submission(s): 511
Special Judge
The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart
from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze.
Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come
to that room).
What is the expect number of tunnels he go through before he find the exit?
At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case.
Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y.
Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room.
3
3
1 2
1 3
0 0
100 0
0 100
3
1 2
2 3
0 0
100 0
0 100
6
1 2
2 3
1 4
4 5
4 6
0 0
20 30
40 30
50 50
70 10
20 60
Case 1: 2.000000
Case 2: impossible
Case 3: 2.895522
有一颗树n个结点n-1条边,根结点为1
对于在点i下一步有3种情况:
1:被杀死回到点1 --- 概率为ki
2:找到出口退出----慨率为ei
3:沿着边进入下一个点
求从点1開始到退出的平均须要走的边数
/*分析:
对于点i:
1,点i是叶子结点,则:
E(i)=ki*E(1)+ei*0+(1-ki-ei)*(E(father)+1)
=>E(i)=ki*E(1)+(1-ki-ei)*E(father)+(1-ki-ei)
2,点i非叶子结点,则:
E(i)=ki*E(1)+ei*0+(1-ki-ei)/m *(E(father)+1)+(1-ki-ei)/m*SUM(E(child)+1)
=>E(i)=ki*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei)/m*SUM(E(child))+(1-ki-ei);//作为1式 从公式可知求E(i)须要求到E(father),E(child)
但这是非常难求到的,由于即使是叶子结点也须要知道E(1),可是E(1)是未知的须要求的 如果:E(i)=Ai*E(1)+Bi*E(father)+Ci;//作为2式 所以:E(child)=Aj*E(1)+Bj*E(i)+Cj;
=>SUM(E(child))=SUm(Aj*E(1)+Bj*E(i)+Cj);
带入1式
=>E(i)=ki*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei)/m*SUm(Aj*E(1)+Bj*E(i)+Cj)+(1-ki-ei);
=>(1-(1-ki-ei)/m*SUM(Bj))*E(i)=(ki+(1-ki-ei)/m*SUM(Aj))*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei+(1-ki-ei)/m*SUM(cj));
与上述2式对照得到:
Ai=(ki+(1-ki-ei)/m*SUM(Aj)) / (1-(1-ki-ei)/m*SUM(Bj))
Bi=(1-ki-ei)/m / (1-(1-ki-ei)/m*SUM(Bj))
Ci=(1-ki-ei+(1-ki-ei)/m*SUM(cj)) / (1-(1-ki-ei)/m*SUM(Bj))
所以Ai,Bi,Ci仅仅与i的孩子Aj,Bj,Cj和本身ki,ei有关
于是能够从叶子開始逆推得到A1,B1,C1
在叶子节点:
Ai=ki;
Bi=(1-ki-ei);
Ci=(1-ki-ei);
而E(1)=A1*E(1)+B1*0+C1;
=>E(1)=C1/(1-A1);
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=10000+10;
const double eps=1e-9;
int n,size;
int head[MAX];
double A,B,C,k[MAX],e[MAX]; struct Edge{
int v,next;
Edge(){}
Edge(int V,int NEXT):v(V),next(NEXT){}
}edge[MAX*2]; void Init(){
memset(head,-1,sizeof head);
size=0;
} void InsertEdge(int u,int v){
edge[size]=Edge(v,head[u]);
head[u]=size++;
} void dfs(int u,int father){
double a=0,b=0,c=0,p;
int m=0;
for(int i=head[u]; i != -1;i=edge[i].next){
int v=edge[i].v;
if(v == father)continue;
dfs(v,u);
a+=A;
b+=B;
c+=C;
++m;
}
if(father != -1)++m;
p=(1-k[u]-e[u])/m;
A=(k[u]+p*a)/(1-p*b);
B=p/(1-p*b);
C=(1-k[u]-e[u]+p*c)/(1-p*b);
} int main(){
int t,u,v,num=0;
scanf("%d",&t);
while(t--){
scanf( "%d",&n);
Init();
for(int i=1;i<n;++i){
scanf("%d%d",&u,&v);
InsertEdge(u,v);
InsertEdge(v,u);
}
for(int i=1;i<=n;++i){
scanf("%lf%lf",&k[i],&e[i]);
k[i]/=100;
e[i]/=100;
}
dfs(1,-1);
if(fabs(A-1)<eps)printf("Case %d: impossible\n",++num);
else printf("Case %d: %.6f\n",++num,C/(1-A));
}
return 0;
}
hdu4035之经典慨率DP的更多相关文章
- ZOJ3640之简单慨率DP
Help Me Escape Time Limit: 2 Seconds Memory Limit: 32768 KB Background If thou doest well, ...
- Uva 10891 经典博弈区间DP
经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...
- poj3311 TSP经典状压dp(Traveling Saleman Problem)
题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...
- NYOJ90 整数划分(经典递归和dp)
整数划分 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 将正整数n表示成一系列正整数之和:n=n1+n2+…+nk, 其中n1≥n2≥…≥nk≥1,k≥1. 正 ...
- hoj 2662 经典状压dp // MyFirst 状压dp
题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2662 1.引言:用dp解决一个问题的时候很重要的一环就是状态的表示,一般来说,一个数组即可保存状态. ...
- POJ 1185 经典状压dp
做了很久的题 有注释 #include<stdio.h> #include<string.h> #include<algorithm> #include<ma ...
- hdu3534,个人认为很经典的树形dp
题目大意为,求一个树的直径(最长路),以及直径的数量 朴素的dp只能找出某点开始的最长路径,但这个最长路径却不一定是树的直径,本弱先开始就想简单了,一直wa 直到我看了某位大牛的题解... 按照那位大 ...
- poj 2342 Anniversary party_经典树状dp
题意:Ural大学有n个职员,1~N编号,他们有从属关系,就是说他们关系就像一棵树,父节点就是子节点的直接上司,每个职员有一个快乐指数,现在要开会,职员和职员的直接上司不能同时开会,问怎才能使开会的快 ...
- CF 319C(Kalila and Dimna in the Logging Industry-斜率DP,注意叉积LL溢出)
C. Kalila and Dimna in the Logging Industry time limit per test 2 seconds memory limit per test 256 ...
随机推荐
- count(*)与count(1)、count('xxx')等在使用语法方面的区别
语法方面: 区别就是:没有区别!!! “*”号是通配符: “*”号是通配符 “*”号是通配符 使用"*"号和使用其他数字和任意非字段字符在使用方面没有任何语法错误; 至于效率方面是 ...
- nginx 查看当前的连接数
netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a,S[a]}' https://www.cnblogs.com/lianzhil ...
- C# Winform频繁刷新导致界面闪烁解决方法
C#Winform频繁刷新导致界面闪烁解决方法 一.通过对窗体和控件使用双缓冲来减少图形闪烁(当绘制图片时出现闪烁时,使用双缓冲) 对于大多数应用程序,.NET Framework 提供的默认双缓冲将 ...
- IDEA配置toString方法
1.toString JSON带父类toString public java.lang.String toString() { final java.lang.StringBuilder sb = n ...
- intellij idea 远程tomcat 调试
由于在服务器上远程调试风险较高,所以万不得已的情况下 不要这样做.可以本地调试好 再上传到服务器上. 1.关闭防火墙 启动Firewalld,及开机自启. # systemctl start fir ...
- 这是我在word 2010上发布的第一篇文章
1.设置word 2010,添加cnblogs帐户 配置参考链接 其中URL地址为: http://rpc.cnblogs.com/metaweblog/fariver,在cnblogs配置的最下方可 ...
- EasyUi – 1.入门
1.页面引用. jquery,easyui,主题easyui.css,图标ico.css,语言zh_CN.js <script src="Scripts/jquery-easyui-1 ...
- 重记解决kube-dns故障一则---ceph惹的祸
上次,在同一个k8s集群里安装完ceph进行功能测试. 当测试完成之后,我停止了ceph的程序,再重新启动k8s集群. 结果,有一个应用就出问题了. 后来查出是因为防火墙里 Chain FORWARD ...
- HDU - 4777 离线树状数组
离线树状数组搞一搞. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #de ...
- PHP实现插入排序
插入排序思想: 插入排序(Insertion Sort)的算法描述是一种简单直观的排序算法. 它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描, 找到相应位置并插入.插入排序 ...