hdu4035之经典慨率DP
Maze
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 1419 Accepted Submission(s): 511
Special Judge
The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart
from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze.
Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come
to that room).
What is the expect number of tunnels he go through before he find the exit?
At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case.
Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y.
Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room.
3
3
1 2
1 3
0 0
100 0
0 100
3
1 2
2 3
0 0
100 0
0 100
6
1 2
2 3
1 4
4 5
4 6
0 0
20 30
40 30
50 50
70 10
20 60
Case 1: 2.000000
Case 2: impossible
Case 3: 2.895522
有一颗树n个结点n-1条边,根结点为1
对于在点i下一步有3种情况:
1:被杀死回到点1 --- 概率为ki
2:找到出口退出----慨率为ei
3:沿着边进入下一个点
求从点1開始到退出的平均须要走的边数
/*分析:
对于点i:
1,点i是叶子结点,则:
E(i)=ki*E(1)+ei*0+(1-ki-ei)*(E(father)+1)
=>E(i)=ki*E(1)+(1-ki-ei)*E(father)+(1-ki-ei)
2,点i非叶子结点,则:
E(i)=ki*E(1)+ei*0+(1-ki-ei)/m *(E(father)+1)+(1-ki-ei)/m*SUM(E(child)+1)
=>E(i)=ki*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei)/m*SUM(E(child))+(1-ki-ei);//作为1式 从公式可知求E(i)须要求到E(father),E(child)
但这是非常难求到的,由于即使是叶子结点也须要知道E(1),可是E(1)是未知的须要求的 如果:E(i)=Ai*E(1)+Bi*E(father)+Ci;//作为2式 所以:E(child)=Aj*E(1)+Bj*E(i)+Cj;
=>SUM(E(child))=SUm(Aj*E(1)+Bj*E(i)+Cj);
带入1式
=>E(i)=ki*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei)/m*SUm(Aj*E(1)+Bj*E(i)+Cj)+(1-ki-ei);
=>(1-(1-ki-ei)/m*SUM(Bj))*E(i)=(ki+(1-ki-ei)/m*SUM(Aj))*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei+(1-ki-ei)/m*SUM(cj));
与上述2式对照得到:
Ai=(ki+(1-ki-ei)/m*SUM(Aj)) / (1-(1-ki-ei)/m*SUM(Bj))
Bi=(1-ki-ei)/m / (1-(1-ki-ei)/m*SUM(Bj))
Ci=(1-ki-ei+(1-ki-ei)/m*SUM(cj)) / (1-(1-ki-ei)/m*SUM(Bj))
所以Ai,Bi,Ci仅仅与i的孩子Aj,Bj,Cj和本身ki,ei有关
于是能够从叶子開始逆推得到A1,B1,C1
在叶子节点:
Ai=ki;
Bi=(1-ki-ei);
Ci=(1-ki-ei);
而E(1)=A1*E(1)+B1*0+C1;
=>E(1)=C1/(1-A1);
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=10000+10;
const double eps=1e-9;
int n,size;
int head[MAX];
double A,B,C,k[MAX],e[MAX]; struct Edge{
int v,next;
Edge(){}
Edge(int V,int NEXT):v(V),next(NEXT){}
}edge[MAX*2]; void Init(){
memset(head,-1,sizeof head);
size=0;
} void InsertEdge(int u,int v){
edge[size]=Edge(v,head[u]);
head[u]=size++;
} void dfs(int u,int father){
double a=0,b=0,c=0,p;
int m=0;
for(int i=head[u]; i != -1;i=edge[i].next){
int v=edge[i].v;
if(v == father)continue;
dfs(v,u);
a+=A;
b+=B;
c+=C;
++m;
}
if(father != -1)++m;
p=(1-k[u]-e[u])/m;
A=(k[u]+p*a)/(1-p*b);
B=p/(1-p*b);
C=(1-k[u]-e[u]+p*c)/(1-p*b);
} int main(){
int t,u,v,num=0;
scanf("%d",&t);
while(t--){
scanf( "%d",&n);
Init();
for(int i=1;i<n;++i){
scanf("%d%d",&u,&v);
InsertEdge(u,v);
InsertEdge(v,u);
}
for(int i=1;i<=n;++i){
scanf("%lf%lf",&k[i],&e[i]);
k[i]/=100;
e[i]/=100;
}
dfs(1,-1);
if(fabs(A-1)<eps)printf("Case %d: impossible\n",++num);
else printf("Case %d: %.6f\n",++num,C/(1-A));
}
return 0;
}
hdu4035之经典慨率DP的更多相关文章
- ZOJ3640之简单慨率DP
Help Me Escape Time Limit: 2 Seconds Memory Limit: 32768 KB Background If thou doest well, ...
- Uva 10891 经典博弈区间DP
经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...
- poj3311 TSP经典状压dp(Traveling Saleman Problem)
题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...
- NYOJ90 整数划分(经典递归和dp)
整数划分 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 将正整数n表示成一系列正整数之和:n=n1+n2+…+nk, 其中n1≥n2≥…≥nk≥1,k≥1. 正 ...
- hoj 2662 经典状压dp // MyFirst 状压dp
题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2662 1.引言:用dp解决一个问题的时候很重要的一环就是状态的表示,一般来说,一个数组即可保存状态. ...
- POJ 1185 经典状压dp
做了很久的题 有注释 #include<stdio.h> #include<string.h> #include<algorithm> #include<ma ...
- hdu3534,个人认为很经典的树形dp
题目大意为,求一个树的直径(最长路),以及直径的数量 朴素的dp只能找出某点开始的最长路径,但这个最长路径却不一定是树的直径,本弱先开始就想简单了,一直wa 直到我看了某位大牛的题解... 按照那位大 ...
- poj 2342 Anniversary party_经典树状dp
题意:Ural大学有n个职员,1~N编号,他们有从属关系,就是说他们关系就像一棵树,父节点就是子节点的直接上司,每个职员有一个快乐指数,现在要开会,职员和职员的直接上司不能同时开会,问怎才能使开会的快 ...
- CF 319C(Kalila and Dimna in the Logging Industry-斜率DP,注意叉积LL溢出)
C. Kalila and Dimna in the Logging Industry time limit per test 2 seconds memory limit per test 256 ...
随机推荐
- ubuntu16.04 安装 python3.6, 并创建虚拟环境(使用python3.6)
ubuntu16.04 安装 python3.6, 并创建虚拟环境(使用python3.6) ubuntu16.04中默认安装了 python2.7 python3 python3.5.2 (注意 : ...
- nginx 查看当前的连接数
netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a,S[a]}' https://www.cnblogs.com/lianzhil ...
- BootStarp的form表单的基本写法
代码如下: <!DOCTYPE html> <html> <head> <title>BootStrap的基础入门</title> < ...
- TGPPen 宽度的理解
procedure TForm4.Button1Click(Sender: TObject); var g: TGPGraphics; p: TGPPen; begin g := TGPGraphic ...
- HDU 1878 欧拉回路(判断欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...
- sicily 1154. Easy sort (tree sort& merge sort)
Description You know sorting is very important. And this easy problem is: Given you an array with N ...
- System.Net.Mail的应用,后端发送邮件
private void btn_send_Click(object sender, EventArgs e) { var emailAcount = ConfigurationManager.App ...
- [实战]MVC5+EF6+MySql企业网盘实战(8)——文件下载、删除
写在前面 上篇文章通过iframe实现了文件的无刷新上传.这篇我们将实现文件的下载与删除. 系列文章 [EF]vs15+ef6+mysql code first方式 [实战]MVC5+EF6+MySq ...
- out与ref修饰符
out修饰符 定义 作用 使用注意 总结 定义 out意为output,所以被out修饰的参数叫做输出参数. 通过使用out修饰的参数,方法可以返回对应参数的值 作用 先看一个例子 定义变量: ...
- 【笔试题】Java 继承知识点检测
笔试题 Java 继承知识点检测 Question 1 Output of following Java Program? class Base { public void show() { Syst ...