caffe使用finetume
训练时, solver.prototxt中使用的是train_val.prototxt
./build/tools/caffe/train -solver ./models/bvlc_reference_caffenet/solver.prototxt
使用上面训练的网络提取特征,使用的网络模型是deploy.prototxt
./build/tools/extract_features.bin models/bvlc_refrence_caffenet.caffemodel models/bvlc_refrence_caffenet/deploy.prototxt

Caffe finetune
1、准备finetune的数据
image文件夹子里面放好来finetune的图片
train.txt中放上finetune的训练图片绝对路径,及其对应的类别
test.txt中放上finetune的测试图片绝对路径,及其对应的类别

2、更改train_val.prototxt
更改最后一层

a)输出个数改变
b)最后一层学习率变大,由2变成20
3、更改solver.prototxt
a)stepsize变小:由100000变成20000
b)max_iter变小:450000变成50000
c)base_lr变小:0.01变成0.001
d)test_iter变小:1000变成100
4、调用命令finetune
caffe % ./build/tools/caffe train -solver models/finetune_flickr_style/solver.prototxt -weights models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel -gpu 0
注意:学习率有两个是一个是weight,一个是bias的学习率,一般bias的学习率是weight的两倍
decay是权值衰减,是加了正则项目,防止overfitting
the global weight_decay multiplies the parameter-specific decay_mult
solver.prototxt具体设置解释:

rmsprop:
net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
#The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.0
weight_decay: 0.0005
#The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_rmsprop"
solver_mode: GPU
type: "RMSProp"
rms_decay: 0.98 Adam:
net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
#All parameters are from the cited paper above
base_lr: 0.001
momentum: 0.9
momentum2: 0.999
#since Adam dynamically changes the learning rate, we set the base learning
#rate to a fixed value
lr_policy: "fixed"
display: 100
#The maximum number of iterations
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
type: "Adam"
solver_mode: GPU multistep:
net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
#The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
#The learning rate policy
lr_policy: "multistep"
gamma: 0.9
stepvalue: 5000
stepvalue: 7000
stepvalue: 8000
stepvalue: 9000
stepvalue: 9500
# Display every 100 iterations
display: 100
#The maximum number of iterations
max_iter: 10000
#snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_multistep"
#solver mode: CPU or GPU
solver_mode: GPU
卷积层的group参数,可以实现channel-wise的卷积操作
caffe使用finetume的更多相关文章
- 基于window7+caffe实现图像艺术风格转换style-transfer
这个是在去年微博里面非常流行的,在git_hub上的代码是https://github.com/fzliu/style-transfer 比如这是梵高的画 这是你自己的照片 然后你想生成这样 怎么实现 ...
- caffe的python接口学习(7):绘制loss和accuracy曲线
使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupy ...
- 基于Caffe的Large Margin Softmax Loss的实现(中)
小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文: http://www.miao ...
- 基于Caffe的Large Margin Softmax Loss的实现(上)
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L- ...
- 基于Caffe的DeepID2实现(下)
小喵的唠叨话:这次的博客,真心累伤了小喵的心.但考虑到知识需要巩固和分享,小喵决定这次把剩下的内容都写完. 小喵的博客:http://www.miaoerduo.com 博客原文: http://ww ...
- 基于Caffe的DeepID2实现(中)
小喵的唠叨话:我们在上一篇博客里面,介绍了Caffe的Data层的编写.有了Data层,下一步则是如何去使用生成好的训练数据.也就是这一篇的内容. 小喵的博客:http://www.miaoerduo ...
- 基于Caffe的DeepID2实现(上)
小喵的唠叨话:小喵最近在做人脸识别的工作,打算将汤晓鸥前辈的DeepID,DeepID2等算法进行实验和复现.DeepID的方法最简单,而DeepID2的实现却略微复杂,并且互联网上也没有比较好的资源 ...
- 基于英特尔® 至强™ 处理器 E5 产品家族的多节点分布式内存系统上的 Caffe* 培训
原文链接 深度神经网络 (DNN) 培训属于计算密集型项目,需要在现代计算平台上花费数日或数周的时间方可完成. 在最近的一篇文章<基于英特尔® 至强™ E5 产品家族的单节点 Caffe 评分和 ...
- 基于英特尔® 至强 E5 系列处理器的单节点 Caffe 评分和训练
原文链接 在互联网搜索引擎和医疗成像等诸多领域,深度神经网络 (DNN) 应用的重要性正在不断提升. Pradeep Dubey 在其博文中概述了英特尔® 架构机器学习愿景. 英特尔正在实现 Prad ...
随机推荐
- Redis的String、Hash类型命令
String是最简单的类型,一个Key对应一个Value,string类型是二进制安全的.Redis的string可以包含任何数据,比如jpg图片或者序列化的对象.最大上限是1G字节. Hash ...
- MapReduce(二)常用三大组件
mapreduce三大组件:Combiner\Sort\Partitioner 默认组件:排序,分区(不设置,系统有默认值) 一.mapreduce中的Combiner 1.什么是combiner C ...
- [杂谈]ACM启程
此处省略一大段传奇的经历. 只需要知道的是,现在再次开始使用本博客的唯一原因就是——我进大学有搞ACM的打算. 其实本来是没有的,受到某学长的指引和推荐,我觉得这条路在当前确切是绝对的优选. 2年没碰 ...
- 【bzoj4559】成绩比较
Portal -->bzoj4559 补档计划 借这题补个档--拉格朗日插值 插值的话大概就是有一个\(n-1\)次多项式\(A(x)\),你只知道它在\(n\)处的点值,分别是\ ...
- gitlab配置自动同步
如果需要同步到生产环境,请做额外处理,如自动化测试,测试通过再同步. <?php $project = trim($_GET['project']); if (empty($project)) ...
- Swagger2 添加HTTP head参数,解决用户是token信息保留
转:http://blog.csdn.net/u014044812/article/details/71473226 大家使用swagger往往会和JWT一起使用,而一般使用jwt会将token放在h ...
- 【题解】Berland.Taxi Codeforces 883L 模拟 线段树 堆
Prelude 题目传送门:ヾ(•ω•`)o Solution 按照题意模拟即可. 维护一个优先队列,里面装的是正在运营中的出租车,关键字是乘客的下车时间. 维护一个线段树,第\(i\)个位置表示第\ ...
- MySQL语句查看各个数据库占用空间
select table_schema, sum(DATA_LENGTH)+sum(INDEX_LENGTH) from information_schema.tables group by tabl ...
- tf.slice函数解析
tf.slice函数解析 觉得有用的话,欢迎一起讨论相互学习~Follow Me tf.slice(input_, begin, size, name = None) 解释 : 这个函数的作用是从输入 ...
- zoj 2314 Reactor Cooling (无源汇上下界可行流)
Reactor Coolinghttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 Time Limit: 5 Seconds ...