这篇博客对论文进行了部分翻译http://blog.csdn.net/vintage_1/article/details/19546953,不过个人觉得博主有些理解有误。

这篇博客简单分析了代码http://www.cnblogs.com/zeadoit/p/4161427.html

本文的DLT算法在无监督特征的学习,是在线下训练阶段使用SDAE从大量图像数据中学到图像特征,首次运用一层一层的预训练,然后整个SDAE就是fine-tuned.

在线跟踪过程中,一个附加的分类层来对部分训练好的SDAE进行编码。

1.Offline Training with Auxiliary Data

1.1.1 Dataset and Preprocessing

               预处理做的不多,包括把32*32的图像转为1024*1的向量,每维的特征值被归一化。

1.1.2 Learning Generic Image Features with a Stacked Denoising Autoencoder

               DAE的优化问题可表示为如下形式:

为了更进一步的学习到有意义的特征,对隐藏神经元的激活值施加稀疏性约束:

预训练之后,SDAE可看作一个前馈神经网络。

在第一层使用一个完备的滤波器来学习图像的特征,当新的一层加入时,神经元的个数减半,直到减到256个神经元,作为自编码器的bottleneck。

为了加速第一层的预训练学习局部特征的过程,把32*32的图像分成16*16(除了四个角外,中间还有一个,会与四个角重叠)。然后训练5个DAEs,每个

有512隐含单元。然后将5个DAE组合成一个大的DAE并正常训练。第一层随机选择的滤波器如图所示,可以看出大部分滤波器起的是边缘检测的作用。

1.2 Online Tracking Process

         跟踪目标在第一帧里用边框框出来。一个sigmoid分类层添加到离线训练好的SDAE的编码器之后,整体网络如Fig1所示。当一个新的视频帧到来,我们首先撒粒子(一个粒子就是目标可能存在的一块图像,32*32),每个粒子的可信度(即与首帧提取的特征的想似度)通过网络前向传播确定。这种方法在这一步的计算量非常小但准确度很高。如果所有粒子的最大可信度小于预定的阈值,就表示追踪目标的外观发生了巨大改变。为解决这个问题,一旦发生这种情况,这个网络可以再次tune。阈值的设定是一个tradeoff,如果太小,跟踪器不能很好地适应目标的外表变换;如果太大,遮挡物体和背景都有可能被当做跟踪目标,从而造成跟踪从目标漂移。

整个过程仍然是粒子滤波框架,只是将人工特征变成了自动提取特征并通过网络来确定可信度。具体实现还需参考代码。

Learning a Deep Compact Image Representation for Visual Tracking的更多相关文章

  1. 论文笔记:Learning regression and verification networks for long-term visual tracking

    Learning regression and verification networks for long-term visual tracking 2019-02-18 22:12:25 Pape ...

  2. [CVPR2018] Context-aware Deep Feature Compression for High-speed Visual Tracking

    基于内容感知深度特征压缩的高速视觉跟踪 论文下载:http://cn.arxiv.org/abs/1803.10537对于视频这种高维度数据,作者训练了多个自编码器AE来进行数据压缩,至于怎么选择具体 ...

  3. Summary on Visual Tracking: Paper List, Benchmarks and Top Groups

    Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is c ...

  4. 论文解读(GRACE)《Deep Graph Contrastive Representation Learning》

    Paper Information 论文标题:Deep Graph Contrastive Representation Learning论文作者:Yanqiao Zhu, Yichen Xu, Fe ...

  5. 论文阅读之:Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space

    Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space  2018-01-04  ...

  6. 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

    论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21: ...

  7. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

  8. Deep Reinforcement Learning with Iterative Shift for Visual Tracking

    Deep Reinforcement Learning with Iterative Shift for Visual Tracking 2019-07-30 14:55:31 Paper: http ...

  9. (转)Understanding, generalisation, and transfer learning in deep neural networks

    Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017   Thi ...

随机推荐

  1. 洛谷5月月赛T30212 玩游戏 【分治NTT + 多项式求ln】

    题目链接 洛谷T30212 题解 式子很容易推出来,二项式定理展开后对于\(k\)的答案即可化简为如下: \[k!(\sum\limits_{i = 0}^{k} \frac{\sum\limits_ ...

  2. MyBatis之自查询,使用 递归实现 N级联动

    A:首先先看下一个简单的面试题 斐波那契数列 计算数组{1,1,2,3,5,8.......} 第30位值 规律:1 1 从第三项开始,每一项都是前两项之和 有两种实现方式 第一种方式: public ...

  3. 【OpenCV入门教程之十四】OpenCV霍夫变换:霍夫线变换,霍夫圆变换合辑

    http://blog.csdn.net/poem_qianmo/article/details/26977557 本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog ...

  4. javascript基本介绍

    javascript是一种广泛用于客户端web开发的脚本语言,常采用来给html网页添加动态功能,比如响应客户的各种操作. 脚本语言是什么? (1).脚本语言往往不能独立运行,它和html/jsp/p ...

  5. php输出控制函数存在的意义

    因为http协议的限制(前几行必须是协议信息,然后一个空行,然后才是用户需要的内容), 需要保证header信息在其他内容之前发送,否则浏览器无法解析服务器返回的内容.

  6. bzoj 2795 [Poi2012]A Horrible Poem hash+数论

    2795: [Poi2012]A Horrible Poem Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 640  Solved: 322[Subm ...

  7. array_unique后,数组本身的值并不会变

    <?php $arr = [ ' ]; print_r($arr); print_r(array_unique($arr)); print_r($arr); //array_unique后,数组 ...

  8. java基础-关键词super与this

    转发:itbooks this是调用自己本身的构造函数,而super是调用父类中的构造函数. 这两个关键词是用在构造函数中的,这两个关键词的设计也是对封装特性的一种考虑,避免编写不必要的重复代码. c ...

  9. HTML5增强的表单

    form元素a.用来定义一个表单,是建立表单的基础元素(就类似定义表格的table)b.表单的其他元素包含在form元素中,其主要子元素有:input/button/select......form元 ...

  10. poi对excel的操作(二)

    二.进阶的对象 1.CellType 枚举类 单元格类型 CellType.STRING---文本型 等 如何是指单元格类型:cell.setCellType(CellType.STRING) 2.C ...