LCT:

分割、合并子树,路径上全部点的点权添加一个值,查询路径上点权的最大值

Query on The Trees

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)

Total Submission(s): 2582    Accepted Submission(s): 1208

Problem Description
We have met so many problems on the tree, so today we will have a query problem on a set of trees. 

There are N nodes, each node will have a unique weight Wi. We will have four kinds of operations on it and you should solve them efficiently. Wish you have fun! 


 
Input
There are multiple test cases in our dataset. 

For each case, the first line contains only one integer N.(1 ≤ N ≤ 300000) The next N‐1 lines each contains two integers x, y which means there is an edge between them. It also means we will give you one tree initially. 

The next line will contains N integers which means the weight Wi of each node. (0 ≤ Wi ≤ 3000) 

The next line will contains an integer Q. (1 ≤ Q ≤ 300000) The next Q lines will start with an integer 1, 2, 3 or 4 means the kind of this operation. 

1. Given two integer x, y, you should make a new edge between these two node x and y. So after this operation, two trees will be connected to a new one. 

2. Given two integer x, y, you should find the tree in the tree set who contain node x, and you should make the node x be the root of this tree, and then you should cut the edge between node y and its parent. So after this operation, a tree will be separate
into two parts. 

3. Given three integer w, x, y, for the x, y and all nodes between the path from x to y, you should increase their weight by w. 

4. Given two integer x, y, you should check the node weights on the path between x and y, and you should output the maximum weight on it. 
 
Output
For each query you should output the correct answer of it. If you find this query is an illegal operation, you should output ‐1. 

You should output a blank line after each test case.
 
Sample Input
5
1 2
2 4
2 5
1 3
1 2 3 4 5
6
4 2 3
2 1 2
4 2 3
1 3 5
3 2 1 4
4 1 4
 
Sample Output
3
-1
7
Hint
We define the illegal situation of different operations:
In first operation: if node x and y belong to a same tree, we think it's illegal.
In second operation: if x = y or x and y not belong to a same tree, we think it's illegal.
In third operation: if x and y not belong to a same tree, we think it's illegal.
In fourth operation: if x and y not belong to a same tree, we think it's illegal.
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int maxn=330000; int ch[maxn][2],pre[maxn],key[maxn];
int add[maxn],rev[maxn],Max[maxn];
bool rt[maxn]; void update_add(int r,int d)
{
if(!r) return ;
key[r]+=d;
add[r]+=d;
Max[r]+=d;
} void update_rev(int r)
{
if(!r) return ;
swap(ch[r][0],ch[r][1]);
rev[r]^=1;
} void push_down(int r)
{
if(add[r])
{
update_add(ch[r][0],add[r]);
update_add(ch[r][1],add[r]);
add[r]=0;
}
if(rev[r])
{
update_rev(ch[r][0]);
update_rev(ch[r][1]);
rev[r]=0;
}
} void push_up(int r)
{
Max[r]=max(max(Max[ch[r][0]],Max[ch[r][1]]),key[r]);
} void Rotate(int x)
{
int y=pre[x],kind=(ch[y][1]==x);
ch[y][kind]=ch[x][!kind];
pre[ch[y][kind]]=y;
pre[x]=pre[y];
pre[y]=x;
ch[x][!kind]=y;
if(rt[y]) rt[y]=false,rt[x]=true;
else ch[pre[x]][ch[pre[x]][1]==y]=x;
push_up(y);
} void P(int r)
{
if(!rt[r]) P(pre[r]);
push_down(r);
} void Splay(int r)
{
P(r);
while(!rt[r])
{
int f=pre[r],ff=pre[f];
if(rt[f]) Rotate(r);
else if((ch[ff][1]==f)==(ch[f][1]==r)) Rotate(f),Rotate(r);
else Rotate(r),Rotate(r);
}
push_up(r);
} int Access(int x)
{
int y=0;
for(;x;x=pre[y=x])
{
Splay(x);
rt[ch[x][1]]=true; rt[ch[x][1]=y]=false;
push_up(x);
}
return y;
} bool judge(int u,int v)
{
while(pre[u]) u=pre[u];
while(pre[v]) v=pre[v];
return u==v;
} void mroot(int r)
{
Access(r);
Splay(r);
update_rev(r);
} void lca(int &u,int &v)
{
Access(v); v=0;
while(u)
{
Splay(u);
if(!pre[u]) return ;
rt[ch[u][1]]=true;
rt[ch[u][1]=v]=false;
push_up(u);
u=pre[v=u];
}
} void link(int u,int v)
{
if(judge(u,v))
{
puts("-1");
return ;
}
mroot(u);
pre[u]=v;
} void cut(int u,int v)
{
if(u==v||!judge(u,v))
{
puts("-1");
return ;
}
mroot(u);
Splay(v);
pre[ch[v][0]]=pre[v];
pre[v]=0;
rt[ch[v][0]]=true;
ch[v][0]=0;
push_up(v);
} void Add(int u,int v,int w)
{
if(!judge(u,v))
{
puts("-1"); return ;
}
lca(u,v);
update_add(ch[u][1],w);
update_add(v,w);
key[u]+=w;
push_up(u);
} void query(int u,int v)
{
if(!judge(u,v))
{
puts("-1");
return ;
}
lca(u,v);
printf("%d\n",max(max(Max[v],Max[ch[u][1]]),key[u]));
} struct Edge
{
int to,next;
}edge[maxn*2]; int Adj[maxn],Size=0; void init()
{
memset(Adj,-1,sizeof(Adj)); Size=0;
} void add_edge(int u,int v)
{
edge[Size].to=v;
edge[Size].next=Adj[u];
Adj[u]=Size++;
} void dfs(int u)
{
for(int i=Adj[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(pre[v]!=0) continue;
pre[v]=u;
dfs(v);
}
}
int n; int main()
{
while(scanf("%d",&n)!=EOF)
{
init();
for(int i=0;i<n+10;i++)
{
pre[i]=0; ch[i][0]=ch[i][1]=0;
rev[i]=0; add[i]=0; rt[i]=true;
} for(int i=0;i<n-1;i++)
{
int u,v;
scanf("%d%d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
pre[1]=-1; dfs(1); pre[1]=0; for(int i=1;i<=n;i++)
{
scanf("%d",key+i);
Max[i]=key[i];
} int q;
scanf("%d",&q);
while(q--)
{
int op;
scanf("%d",&op);
if(op==1)
{
int x,y;
scanf("%d%d",&x,&y);
link(x,y);
}
else if(op==2)
{
int x,y;
scanf("%d%d",&x,&y);
cut(x,y);
}
else if(op==3)
{
int x,y,w;
scanf("%d%d%d",&w,&x,&y);
Add(x,y,w);
}
else if(op==4)
{
int x,y;
scanf("%d%d",&x,&y);
query(x,y);
}
}
putchar(10);
}
return 0;
}

HDOJ 4010 Query on The Trees LCT的更多相关文章

  1. hdu 4010 Query on The Trees LCT

    支持:1.添加边 x,y2.删边 x,y3.对于路径x,y上的所有节点的值加上w4.询问路径x,y上的所有节点的最大权值 分析:裸的lct...rev忘了清零死循环了两小时... 1:就是link操作 ...

  2. 动态树(LCT):HDU 4010 Query on The Trees

    Query on The Trees Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Othe ...

  3. HDU 4010 Query on The Trees(动态树LCT)

    Problem Description We have met so many problems on the tree, so today we will have a query problem ...

  4. HDU 4010 Query on The Trees

    Problem Description We have met so many problems on the tree, so today we will have a query problem ...

  5. HDU 4010 Query on The Trees (动态树)(Link-Cut-Tree)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4010 题意; 先给你一棵树,有 \(4\) 种操作: 1.如果 \(x\) 和 \(y\) 不在同一 ...

  6. HDU 4010.Query on The Trees 解题报告

    题意: 给出一颗树,有4种操作: 1.如果x和y不在同一棵树上则在xy连边 2.如果x和y在同一棵树上并且x!=y则把x换为树根并把y和y的父亲分离 3.如果x和y在同一棵树上则x到y的路径上所有的点 ...

  7. HDU 4010 Query on The Trees(动态树)

    题意 给定一棵 \(n\) 个节点的树,每个点有点权.完成 \(m\) 个操作,操作四两种,连接 \((x,y)\) :提 \(x\) 为根,并断 \(y\) 与它的父节点:增加路径 \((x,y)\ ...

  8. HDU4010 Query on The Trees(LCT)

    人生的第一道动态树,为了弄懂它的大致原理,需要具备一些前置技能,如Splay树,树链剖分的一些概念.在这里写下一些看各种论文时候的心得,下面的代码是拷贝的CLJ的模板,别人写的模板比较可靠也方便自己学 ...

  9. HDU 4010 Query on The Trees(动态树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4010 题意:一棵树,四种操作: (1)若x和y不在一棵树上,将x和y连边: (2)若x和y在一棵树上, ...

随机推荐

  1. redis在linux下安装并測试(在spring下调用)

    官网帮助文档例如以下 Installation Download, extract and compile Redis with: $ wget http://download.redis.io/re ...

  2. Android常用到的一些事件

    1:查看是否有存储卡插入 String status=Environment.getExternalStorageState(); if(status.equals(Enviroment.MEDIA_ ...

  3. 【转】TextView的详细属性

    1.简介: TextView控件可用来展示文本信息(包括HTML文本),可以手动来设置可编辑或不可编辑. 2.创建对象: 1)在代码中通过new的方式创建,创建,设置文本,样式后,通过setConte ...

  4. NCBI SRA数据预处理

    SRA数据的的处理流程大概如下 一.SRA数据下载. NCBI 上存储的数据现在大都存储为SRA格式. 下载以后就是以SRA为后缀名. 这里可以通过三种方式下载SRA格式的数据. 1.通过http方式 ...

  5. 设计模式 - 模板方法模式(template method pattern) 具体解释

    模板方法模式(template method pattern) 详细解释 本文地址: http://blog.csdn.net/caroline_wendy 模板方法模式(template metho ...

  6. linux内核——TSS

    task state segment,任务状态段. 关于每个cpu对应不同TSS段的问题,如下解释: TSS段主要用在当前的任务从用户态切入内核态时去找到该任务的内核堆栈. 多核上的任务是真正的并发, ...

  7. index.js

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  8. MySQL修改root密码的各种方法整理(转)

    整理了以下四种在MySQL中修改root密码的方法,可能对大家有所帮助! 方法1: 用SET PASSWORD命令 mysql -u root mysql> SET PASSWORD FOR ' ...

  9. Node Redis 小试

    Redis 是一个高性能的 key-value 数据库,为了保证效率,数据都是缓存在内存中,在执行频繁而又复杂的数据库查询条件时,可以使用 Redis 缓存一份查询结果,以提升应用性能. 背景 如果一 ...

  10. Atitit.软件按钮与仪表盘(13)--全文索引操作--db数据库子系统mssql2008

    Atitit.软件按钮与仪表盘(13)--全文索引操作--db数据库子系统mssql2008 全文索引操作 4.全文索引和like语句比较 1 5.倒排索引 inverted index 1 2.SQ ...