数字配对(bzoj 4514)
Description
Input
Output
一行一个数,最多进行多少次配对
Sample Input
2 4 8
2 200 7
-1 -2 1
Sample Output
HINT
n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5
/*
这道题本来打算写50分,结果只得了30分,第二部分的自己YY的网络流写错了,原因是没注意要可以转成二分图。
根据题意,如果我们把a[i]质因数分解,那么如果x,y能够建边,那么它们分解出来的个数一定相差1,这样就转成了二分图。
至于题目要求的保证费用要大于等于0,也就是越大越好,我们可以将费用变负,然后跑最小费用,每次增广保证费用不大于0。
*/
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#define N 210
#define lon long long
#define inf 1000000000000000LL
using namespace std;
int n,S,T,cnt=,tot,totx,toty,ans;
int a[N],b[N],head[N],fa[N],prime[],fx[N],fy[N];
lon c[N],dis[N];int inq[N],f[];
struct node{
int u,v,f,pre;lon c;
};node e[N*N];
bool judge(int x,int y){
if(!x||!y) return false;
if(x<y) swap(x,y);
if(x%y!=) return false;
x/=y;
for(int i=;i<=tot;i++){
if(prime[i]>=x) break;
if(x%prime[i]==) return false;
}
return true;
}
void add(int u,int v,int f,lon c){
e[++cnt].u=u;e[cnt].v=v;e[cnt].f=f;e[cnt].c=-c;e[cnt].pre=head[u];head[u]=cnt;
e[++cnt].u=v;e[cnt].v=u;e[cnt].f=;e[cnt].c=c;e[cnt].pre=head[v];head[v]=cnt;
}
bool spfa(){
queue<int> q;
memset(inq,,sizeof(inq));
for(int i=S;i<=T;i++) dis[i]=inf;
dis[S]=;inq[S]=;q.push(S);
while(!q.empty()){
int u=q.front();q.pop();inq[u]=;
for(int i=head[u];i;i=e[i].pre){
int v=e[i].v;
if(e[i].f&&dis[v]>dis[u]+e[i].c){
dis[v]=dis[u]+e[i].c;fa[v]=i;
if(!inq[v]){
q.push(v);inq[v]=;
}
}
}
}
return dis[T]!=inf;
}
void min_cost(){
lon cost=;
while(spfa()){
int tmp=;
for(int i=fa[T];i;i=fa[e[i].u])
tmp=min(tmp,e[i].f);
if(cost+dis[T]*tmp<=){
cost+=dis[T]*tmp;ans+=tmp;
for(int i=fa[T];i;i=fa[e[i].u])
e[i].f-=tmp,e[i^].f+=tmp;
}
else {//这个地方不是很懂
ans-=(cost/dis[T]);
return;
}
}
}
int main(){
freopen("menci_pair.in","r",stdin);
freopen("menci_pair.out","w",stdout);
scanf("%d",&n);
S=;T=n+;
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=n;i++)scanf("%d",&b[i]);
for(int i=;i<=n;i++)scanf("%lld",&c[i]);
for(int i=;i<=;i++){
if(!f[i]) prime[++tot]=i;
for(int j=;j<=tot;j++){
if(i*prime[j]>) break;
f[i*prime[j]]=;
if(i%prime[j]==) break;
}
}
for(int i=;i<=n;i++){
int tmp=a[i],num=;
for(int j=;j<=tot;j++){
while(tmp%prime[j]==) tmp/=prime[j],num++;
if(tmp==) break;
}
if(num&) fx[++totx]=i;
else fy[++toty]=i;
}
for(int i=;i<=totx;i++)
for(int j=;j<=toty;j++)
if(judge(a[fx[i]],a[fy[j]]))
add(fx[i],fy[j],,c[fx[i]]*c[fy[j]]);
for(int i=;i<=totx;i++) add(S,fx[i],b[fx[i]],);
for(int i=;i<=toty;i++) add(fy[i],T,b[fy[i]],);
min_cost();
printf("%d",ans);
return ;
}
数字配对(bzoj 4514)的更多相关文章
- AC日记——[Sdoi2016]数字配对 bzoj 4514
4514 思路: 很受伤现在,,测了那么多次不过的原因就是因为INF不够大: 解法有两种: 解法1: 把n个点按照质因数个数为奇或偶分为两个点集(很容易就可以想到): 然后,按照题目连边跑最大费用流: ...
- 图论(费用流):BZOJ 4514 [Sdoi2016]数字配对
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 820 Solved: 345[Submit][Status ...
- BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]
4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...
- BZOJ 4514: [Sdoi2016]数字配对
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1606 Solved: 608[Submit][Statu ...
- 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 726 Solved: 309[Submit][Status ...
- SDOI 2016 数字配对
题目大意:给定n个数字以及每个数字的个数和权值,将满足条件的数字配对,使得总代价不小于0,且配对最多 最大费用最大流拆点,对于每个点,连一条由S到该点的边,容量为b,花费为0,再连一条到T的边 对于每 ...
- [SDOI2016 Round1] 数字配对
COGS 2221. [SDOI2016 Round1] 数字配对 http://www.cogs.pro/cogs/problem/problem.php?pid=2221 ★★★ 输入文件:m ...
- 【BZOJ4514】【SDOI2016】数字配对 [费用流]
数字配对 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 有 n 种数字,第 i 种数字是 ...
- 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流
[bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...
- 【BZOJ4514】[Sdoi2016]数字配对 费用流
[BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...
随机推荐
- C++:const_cast的简单理解
前言:const_cast是我比较头疼的一个知识点,最近查阅了很多资料,也翻看了很多他人的博客,故在此将自己目前学习到的有关const_cast知识做一个简单的总结 一.什么是const_cast 简 ...
- 第十一次作业 - Alpha 事后诸葛亮(团队)
软工 · 第十一次作业 - Alpha 事后诸葛亮(团队) 组长本次作业链接 现代软件工程 项目Postmortem 设想和目标 1.我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场 ...
- 404 Note Found队——现场编程
目录 组员职责分工 github 的提交日志截图 程序运行截图 程序运行环境 GUI界面 基础功能实现 运行视频 LCG算法 过滤(降权)算法 算法思路 红黑树 附加功能一 背景 实现 附加功能二(迭 ...
- 配置resin web方式部署项目
写在前面,推荐下载resin4.0.47版本.其它版本没有测试 最近打算做一个小项目,然后容器选用了resin.想通过web提交war文件的方式 进行部署,更新代码也方便. 试了resin最新的版本( ...
- nexus在linux上搭建
Maven 仓库的分类:(maven的仓库只有两大类) 1.本地仓库 2.远程仓库,在远程仓库中又分成了3种: 2.1 中央仓库 2.2 私服 2.3 其它公共库 有个maven私服可以很方便地管理我 ...
- 【bzoj3576】[Hnoi2014]江南乐 博弈论+SG定理+数学
题目描述 两人进行 $T$ 轮游戏,给定参数 $F$ ,每轮给出 $N$ 堆石子,先手和后手轮流选择石子数大于等于 $F$ 的一堆,将其分成任意(大于1)堆,使得这些堆中石子数最多的和最少的相差不超过 ...
- 【uoj#164】[清华集训2015]V 线段树维护历史最值
题目描述 给你一个长度为 $n$ 的序列,支持五种操作: $1\ l\ r\ x$ :将 $[l,r]$ 内的数加上 $x$ :$2\ l\ r\ x$ :将 $[l,r]$ 内的数减去 $x$ ,并 ...
- Django 2.0 学习(18):Django 缓存、信号和extra
Django 缓存.信号和extra Django 缓存 由于Django是动态网站,所以每次请求均会去数据库进行相应的操作,当程序访问量大时,耗时必然会显著增加.最简单的解决方法是:使用缓存,缓存将 ...
- BZOJ4197 [Noi2015]寿司晚宴 【状压dp】
题目链接 BZOJ4197 题解 两个人选的数都互质,意味着两个人选择了没有交集的质因子集合 容易想到将两个人所选的质因子集合作为状态\(dp\) \(n\)以内质数很多,但容易发现\(\sqrt{n ...
- P3932 浮游大陆的68号岛 【线段树】
P3932 浮游大陆的68号岛 有一天小妖精们又在做游戏.这个游戏是这样的. 妖精仓库的储物点可以看做在一个数轴上.每一个储物点会有一些东西,同时他们之间存在距离. 每次他们会选出一个小妖精,然后剩下 ...