看了很久网上没有现成的代码和好一点的图,因此当一回搬运工。转自stackoverflow

布斯乘法器的Mips实现方法:

.data

    promptStart:    .asciiz "This program does AxB without using mult or div"
getA: .asciiz "Please enter the first number(multiplicand): "
getB: .asciiz "Please enter the second number(multiplier): " space: .asciiz " " result: .asciiz "The product, using my program is: "
mipMult: .asciiz "The product, using MIPs multu is: " endLine: .asciiz "\n" .text main:
#"welcome" screen
li $v0, # code for print_string
la $a0,promptStart # point $a0 to prompt string
syscall # print the prompt li $v0, # code for print_string
la $a0,endLine # point $a0 to prompt string
syscall # print the prompt #prompt for multiplicand
li $v0, # code for print_string
la $a0,getA # point $a0 to prompt string
syscall # print the prompt #acquire multiplicand
li $v0, # code for read_int
syscall # get an int from user --> returned in $v0
move $s0,$v0 # move the resulting int to $s0
move $s5,$s0 # copy of multiplicand to use in multu #prompt for multiplier
li $v0, # code for print_string
la $a0,getB # point $a0 to prompt string
syscall # print the prompt #acquire multiplier
li $v0, # code for read_int
syscall # get an int from user --> returned in $v0
move $s1,$v0 # move the resulting int to $s0 move $s6,$s1 # copy of multiplier to use in multu jal MyMult
j print MyMult:
move $s3, $ # lw product
move $s4, $ # hw product beq $s1, $, done
beq $s0, $, done move $s2, $ # extend multiplicand to bits loop:
andi $t0, $s0, # LSB(multiplier)
beq $t0, $, next # skip if zero
addu $s3, $s3, $s1 # lw(product) += lw(multiplicand)
sltu $t0, $s3, $s1 # catch carry-out( or )
addu $s4, $s4, $t0 # hw(product) += carry
addu $s4, $s4, $s2 # hw(product) += hw(multiplicand)
next:
# shift multiplicand left
srl $t0, $s1, # copy bit from lw to hw
sll $s1, $s1,
sll $s2, $s2,
addu $s2, $s2, $t0 srl $s0, $s0, # shift multiplier right
bne $s0, $, loop done:
jr $ra print:
# print result string
li $v0, # code for print_string
la $a0,result # point $a0 to string
syscall # print the result string # print out the result
li $v0, # code for print_int
move $a0,$s4 # put result in $a0
syscall # print out result li $v0, # code for print_string
la $a0,space # point $a0 to string
syscall # print the result string li $v0, # code for print_int
move $a0,$s3 # put result in $a0
syscall # print out result # print the line feed
li $v0, # code for print_string
la $a0,endLine # point $a0 to string
syscall # print the linefeed doMult:
#Do same computation using Mult
multu $s5, $s6
mfhi $t0
mflo $t1 li $v0, # code for print_string
la $a0,mipMult # point $a0 to string
syscall # print out the result
li $v0, # code for print_int
move $a0,$t0 # put high in $a0
syscall # print out result li $v0, # code for print_string
la $a0,space # point $a0 to string
syscall # print the result string # print out the result
li $v0, # code for print_int
move $a0,$t1 # put low in $a0
syscall # print out result # print the line feed
li $v0, # code for print_string
la $a0,endLine # point $a0 to string
syscall # print the linefeed # All done, thank you!
li $v0, # code for exit
syscall # exit program

网上的图太糊了,我重新做了以下,仅供参考。

本贴永久地址:http://www.cnblogs.com/liutianchen/p/6535776.html

布斯乘法 Mips实现 - Booth Algorithm的更多相关文章

  1. Booth算法

    Booth算法 算法描述(载自维基百科) 对于N位乘数Y,布斯算法检查其2的补码形式的最后一位和一个隐含的低位,命名为y-1,初始值为0.对于yi, i = 0, 1, ..., N - 1,考察yi ...

  2. 补码一位乘法 Booth算法 Java简易实现

    本文链接:https://www.cnblogs.com/xiaohu12138/p/11955619.html. 转载,请说明出处. 本程序为简易实现补码一位乘法,若代码中存在错误,可指出,本人会不 ...

  3. Booth Multiplication Algorithm [ASM-MIPS]

    A typical implementation Booth's algorithm can be implemented by repeatedly adding (with ordinary un ...

  4. [CF932E]Team Work & [BZOJ5093]图的价值

    CF题面 题意:求\(\sum_{i=0}^{n}\binom{n}{i}i^k\) \(n\le10^9,k\le5000\) 模\(10^9+7\) BZOJ题面 题意:求\(n*2^{\frac ...

  5. Verilog乘法器

    乘法器,不能用乘号直接表示,略坑呀 坑归坑,做还是要做的 思路:首先乘法分为有符号乘与无符号乘,所以建立两个module分别运算有符号与无符号.然后在总module中用case语句判断输出应赋的值. ...

  6. 【BZOJ】1754: [Usaco2005 qua]Bull Math

    [算法]高精度乘法 #include<cstdio> #include<algorithm> #include<cstring> using namespace s ...

  7. [Avito Code Challenge 2018 G] Magic multisets(线段树)

    题目链接:http://codeforces.com/contest/981/problem/G 题目大意: 有n个初始为空的‘魔法’可重集,向一个‘可重集’加入元素时,若该元素未出现过,则将其加入: ...

  8. 51nod 1832 前序后序遍历

    思路:设只有一颗子树的节点有ans个设前序边历数组为pre[100],后序遍历数组为pos[100]:前序遍历的第二个元素是A的一个子节点左右节点不知,设ax-ay表示一个树的前序遍历,bx-by表示 ...

  9. 补码一位乘法(Booth算法,C语言实现)

    补码一位乘法 首先了解下什么是补码? 补码概念的理解,需要先从“模”的概念开始. 我们可以把模理解为一个容器的容量.当超出这个 容量时,会自动溢出.如:我们最常见到的时钟,其容量 是 12,过了 12 ...

随机推荐

  1. 来谈谈 WebAssembly 是个啥?为何说它会影响每一个 Web 开发者?

    作者:link 原文:What is WebAssembly and why it affects web developers! 你听说过WebAssembly吗?这是由Google, Micros ...

  2. Javascript中prototype属性详解 (存)

    Javascript中prototype属性详解   在典型的面向对象的语言中,如java,都存在类(class)的概念,类就是对象的模板,对象就是类的实例.但是在Javascript语言体系中,是不 ...

  3. 关于junit包导入不了但是maven本地库中却存在的问题

    导入项目的时候发现junit的类使用不了,于是就去看看包导入了没有 发现包是灰色的,于是猜想可能是maven本地库中包没下载过来 查询了本地库发现包是存在的,这就奇怪的,经过网上查询之后得到解决方案 ...

  4. zt <Windows Image Acquisition (WIA)> from msdn

    Windows Image Acquisition (WIA)   Windows Image Acquisition (WIA) is the still image acquisition pla ...

  5. spring是什么

    spring是一个容器,用于降低代码间的耦合度,根据不同的代码采用了ioc和aop这二种技术来解耦合. 比如转账操作:a用户少1000,b用户多1000.这是主业务逻辑   IOC 涉及到的事务,日志 ...

  6. re模块之re.match

    re模块--python 正则表达式 正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配. Python 自1.5版本起增加了re 模块,它提供 Perl 风格的正则表达 ...

  7. html学习代码

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  8. CS API 测试2

    //删除数据中心 http://192.168.150.16:8900/client/api?command=deleteZone&id=c2d4f46a-51af-4806-8378-4b3 ...

  9. 最小生成树 prim

    1.算法思想: 图采用邻接矩阵存储,贪心找到目前情况下能连上的权值最小的边的另一端点,加入之,直到所有的顶点加入完毕. 2.算法实现步骤: 设图G =(V,E),其生成树的顶点集合为U. (1)把v0 ...

  10. scrapy框架 小知识

    持久化 去重规则 深度 cookie start_url 深度和优先级 下载中间件 持久化 步骤 pipeline/items a. 先写pipeline类 class XXXPipeline(obj ...