题面

题解

可以想到枚举成为最大前缀和的一部分的数

设\(sum_i=\sum\limits_{j\in i}a[j]\)

设\(f_i\)表示满足\(i\)的最大前缀和等于\(sum_i\)的方案数

转移:对于\(\forall k\notin i, sum_i > 0\)

则有

\[f_{i\cup\{k\}} \gets f_i
\]

原理:我们考虑倒着插入数字,如果存在后缀\(sum_{suf} > 0\)就可以直接转移

设\(g_i\)表示满足\(i\)的所有前缀和都\(\leq 0\)的方案数

转移:对于\(\forall k \notin i, sum_{i\cup\{k\}} \leq 0\)

则有

\[g_{i\cup \{k\}} \gets g_i
\]

\[\therefore ans = \sum_i sum_i f_i g_{\complement_S i}
\]

其中\(\complement_S i\)表示\(i\)的补集

代码

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define clear(x, y) memset(x, y, sizeof(x)) inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const int N(21), Mod(998244353);
int n, a[1 << N], sum[1 << N];
int f[1 << N], g[1 << N], S, ans; int main()
{
S = 1 << (n = read()), g[0] = 1;
for(RG int i = 0; i < n; i++) a[1 << i] = read();
for(RG int i = 0; i < S; i++) sum[i] = sum[i ^ (i & -i)] + a[i & -i];
for(RG int i = 0; i < S; i++) if(sum[i] <= 0)
for(RG int j = 0; j < n; j++) if((i >> j) & 1)
g[i] = (g[i] + g[i ^ (1 << j)]) % Mod;
for(RG int i = 0; i < n; i++) f[1 << i] = 1;
for(RG int i = 0; i < S; i++)
{
if(sum[i] > 0) for(RG int j = 0; j < n; j++) if(!((i >> j) & 1))
f[i | (1 << j)] = (f[i | (1 << j)] + f[i]) % Mod;
ans = (ans + 1ll * (sum[i] + Mod) * f[i] % Mod
* g[(S - 1) ^ i] % Mod) % Mod;
}
printf("%d\n", ans);
return 0;
}

「PKUSC2018」最大前缀和的更多相关文章

  1. LOJ#6433. 「PKUSC2018」最大前缀和 状压dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...

  2. 「PKUSC2018」最大前缀和(状压dp)

    前言 考试被\(hyj\)吊着打... Solution 考虑一下如果前缀和如果在某一个位置的后面的任意一个前缀和都<=0,肯定这就是最大的. 然后这样子就考虑左右两边的状压dp,然后就好了. ...

  3. 「PKUSC2018」最大前缀和 LOJ#6433&BZOJ5369

    分析: 这个题非常的棒,目测如果去了能AC... 我们考虑一个序列是如何构成的——一个后缀>0的序列,和一个前缀<0的序列 问题可以简化为求出当前缀和为状态S的所有数的和的时候,S满足后缀 ...

  4. 【LOJ】#6433. 「PKUSC2018」最大前缀和

    题解 神仙的状压啊QAQ 设一个\(f[S]\)表示数字的集合为\(S\)时\(sum[S]\)为前缀最大值的方案数 \(g[S]\)表示数字集合为\(S\)时所有前缀和都小于等于0的方案数 答案就是 ...

  5. loj 6433 「PKUSC2018」最大前缀和 题解【DP】【枚举】【二进制】【排列组合】

    这是个什么集合DP啊- 想过枚举断点但是不会处理接下来的问题了- 我好菜啊 题目描述 小 C 是一个算法竞赛爱好者,有一天小 C 遇到了一个非常难的问题:求一个序列的最大子段和. 但是小 C 并不会做 ...

  6. Loj#6433「PKUSC2018」最大前缀和(状态压缩DP)

    题面 Loj 题解 先转化题意,其实这题在乘了\(n!\)以后就变成了全排列中的最大前缀和的和(有点拗口).\(n\leq20\),考虑状压\(DP\) 考虑一个最大前缀和\(\sum\limits_ ...

  7. Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)

    题面 Loj 题解 感觉挺难的啊- 状压\(dp\) 首先,有一个性质 对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\) 显然对于每个\(\sum_{i=p+1}^{x}A[i] ...

  8. loj#6433. 「PKUSC2018」最大前缀和(状压dp)

    传送门 今天\(PKUWC\)试机的题 看着边上的大佬们一个个\(A\)穿咱还是不会-- 我们考虑枚举最大前缀和,如果一个前缀\(1\)到\(p\)是最大前缀和,那么\(p\)后面的所有前缀和都要小于 ...

  9. LOJ 6433 「PKUSC2018」最大前缀和——状压DP

    题目:https://loj.ac/problem/6433 想到一个方案中没有被选的后缀满足 “该后缀的任一前缀和 <=0 ”. 于是令 dp[ S ] 表示选了点集 S ,满足任一前缀和 & ...

随机推荐

  1. SQL 中Count()的问题

    假如一张表中有如下的数据: 当使用select Count(*) from TableName表示获取表中数据记录的条数: 有时候可以通过select Count(列名) from TableName ...

  2. .net 下使用Quartz.Net

    Quartz.net是作业调度框架 1. 项目中添加quartz.net的引用(这里使用nuget管理) 新建一个类TimingJob,该类主要用于实现任务逻辑 using Quartz; using ...

  3. 奇怪的等待事件“enq: ss - contention”

    数据库有时会遇到大量的进程发生'enq: ss - contention'等待,持续5到10分钟,然后自动消失.从字面上看,'SS'是Sort Segment: select * from v$loc ...

  4. 定制controller转场动画

    定制controller转场动画 从iOS7开始就可以自由定制控制器间的转场动画了,以下实例描述最简单的定制方式,达到的效果如下所示: 为了实现这个效果需要这么多的文件-_-!!!! RootView ...

  5. Python学习---IO的异步[自定义异步IO]

    自定义IO异步基础知识: --所有的请求都基于socket实现,一个请求就是一个socket socket.setblocking(False) 不需要阻塞,一个请求完了发送另外一个,会报错,需解决 ...

  6. (z转)基于CPU的Bank BRDF经验模型,实现各向异性光照效果!

    摘抄“GPU Programming And Cg Language Primer 1rd Edition” 中文 名“GPU编程与CG语言之阳春白雪下里巴人” BRDF 光照模型 10.2.1 什么 ...

  7. ZT 用gdb调试core dump文件

    用gdb调试core dump文件 转载自:http://blog.chinaunix.net/u2/83905/showart_2134570.html 在Unix系统下,应用程序崩溃,一般会产生c ...

  8. codeforces 348D Turtles

    codeforces 348D Turtles 题意 题解 代码 #include<bits/stdc++.h> using namespace std; #define fi first ...

  9. ECharts 定制 label 样式

    起因 实现对 label 的样式定制,自定义字体颜色.大小等属性:效果如下图 实现   itemStyle: {   normal: {   color: '#f7ba0e',   label: { ...

  10. [SHOI2008]小约翰的游戏

    题目 不会,抄论文 这是一个非常牛逼的东西,叫做\(anti\)博弈,就是进行最后一次操作的人输 我们考虑一下这道题 显然如果石子个数都是\(1\),那么有奇数堆石子先手必败,有偶数堆石子先手必胜 如 ...