首先第一篇讨论的是差分约束系统解的存在

差分约束系统是有 \(n\) 个变量及 \(m\) 个(如 \(x_{i} - x_{j} \leq a_{k}\) )关系组成的系统

差分约束解的求解可以转化为图中最短路的求解问题

对一个标准的差分约束式, 我们可以如下连边$$x_{i} - x_{j} \leq a_{k}\ \Rightarrow \ V(j\ ,\ i), w[j,i] = a[k]$$

对于一个不是那么标准的差分约数式, 我们可以做如下变形:$$x_{i} - x_{j} \geq a_{k} \Rightarrow x_{j} - x_{i} \leq -a_{k}$$$$x_{i} - x_{j} < a_{k} \Rightarrow x_{i} - x_{j} \leq a_{k} + 1$$$$x_{i} = x_{j} \Rightarrow x_{i} - x_{j} \leq 0 \ & &\ x_{j} - x_{i} \leq 0$$

然后连边, 转化为最短路是否有解的问题, 考虑 \(SPFA\) 解决, 值得注意的是, 这个图不一定只有一个联通块, 所以我们从源点 \(0\) 出发, 初始先像每一个点连边, 权为 \(0\) , 以源点为起点进行 \(SPFA\) 便会比较方便了

P.s : 一般差分约数只是判断是否有解的数据会比较恶心,所以可以使用 \(SPFA(dfs)\) 来代替 \(SPFA(bfs)\) , 遇到负环直接退出, 效率较高

可以试想一下, 跑出来的最短路是什么呢? 无法到达又说明着什么呢? 这将会在下一篇进行探讨

P1993 小K的农场

题目描述

小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述:

农场a比农场b至少多种植了c个单位的作物,

农场a比农场b至多多种植了c个单位的作物,

农场a与农场b种植的作物数一样多。

但是,由于小K的记忆有些偏差,所以他想要知道存不存在一种情况,使得农场的种植作物数量与他记忆中的所有信息吻合。

输入输出格式

输入格式:

第一行包括两个整数 n 和 m,分别表示农场数目和小 K 记忆中的信息数目。

接下来 m 行:

如果每行的第一个数是 1,接下来有 3 个整数 a,b,c,表示农场 a 比农场 b 至少多种植了 c 个单位的作物。

如果每行的第一个数是 2,接下来有 3 个整数 a,b,c,表示农场 a 比农场 b 至多多种植了 c 个单位的作物。如果每行的第一个数是 3,接下来有 2 个整数 a,b,表示农场 a 种植的的数量和 b 一样多。

输出格式:

如果存在某种情况与小 K 的记忆吻合,输出“Yes”,否则输出“No”。


板题, 手算, 转换一下关系连边即可。

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
int RD(){
int flag = 1, out = 0;char c = getchar();
while(c < '0' || c > '9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 1000019, INF = 1e9 + 19;
int head[maxn], nume = 1;
int num, ni;
struct Node{
int u, v, dis, nxt;
}E[maxn << 3];
void add(int u, int v, int dis){
E[++nume].nxt = head[u];
E[nume].v = v;
E[nume].dis = dis;
head[u] = nume;
}
int d[maxn];
bool ins[maxn], flag;
void SPFA(int u){
ins[u] = 1;
for(int i = head[u];i;i = E[i].nxt){
int v = E[i].v, dis = E[i].dis;
if(d[u] + dis < d[v]){
if(ins[v]){flag = 1;return ;}
d[v] = d[u] + dis;
SPFA(v);
}
}
ins[u] = 0;
}
int main(){
num = RD();ni = RD();
for(int i = 1;i <= num;i++)add(0, i, 0);
for(int i = 1;i <= ni;i++){
int cmd = RD(), a = RD(), b = RD(), c;
if(cmd == 1)c = RD(), add(a, b, -c);
else if(cmd == 2)c = RD(), add(b, a, c);
else add(a, b, 0), add(b, a, 0);
}
for(int i = 1;i <= num;i++)d[i] = INF;
SPFA(0);
flag ? puts("No") : puts("Yes");
return 0;
}

P1993 小K的农场 && 差分约束的更多相关文章

  1. 洛谷P1993 小K的农场 [差分约束系统]

    题目传送门 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...

  2. 【BZOJ3436】小K的农场 差分约束

    [BZOJ3436]小K的农场 Description 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了, ...

  3. P1993 小K的农场 差分约束系统

    这个题是一道差分约束系统的裸题,什么是差分约束系统呢?就是给了一些大小条件,然后让你找一个满足的图.这时就要用差分约束了. 怎么做呢?其实很简单,就是直接建图就好,但是要把所有条件变为小于等于号,假如 ...

  4. 小K的农场 差分约束

    题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b至少多种植了c个单位的作 ...

  5. BZOJ 3436: 小K的农场 差分约束

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=3436 题解: 裸的差分约束: 1.a>=b+c  ->  b<=a-c ...

  6. P1993 小K的农场

    P1993 小K的农场比较裸的差分约束,只是我判负环的时候sb了... 有负环意味着无解 #include<iostream> #include<cstdio> #includ ...

  7. 洛谷 P1993 小K的农场 解题报告

    P1993 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...

  8. 洛谷 P1993 小K的农场

    P1993 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...

  9. P1993 小K的农场(差分约束)

    小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b至少多种植了 ...

随机推荐

  1. java判断字符串编码

    是 public static String getEncoding(String str){ String encoding = "UTF-8"; try { if (str.e ...

  2. 查询数据库时mapper报错:It's likely that neither a Result Type nor a Result Map was specified.

    因为mapper.xml里把resultType写成了parameterType

  3. c#学习路线及目录导航

    一 很久前的想法 转眼间,2018年已经过了四分之一,从我进入学校选择计算机专业到现在工作,已经过去了4年之久了.这一路走来经历了很多的曲折,对软件开发这个职业有了许多新的认识,我主要是从事NET领域 ...

  4. 第一个spring冲刺

    第一天商量讨论出我们选择的题目为四则运算,虽然在上一个学期已经做过了,但是还有完善的地方,希望能够做出创新,另外下面的燃尽图是我们预测的3个阶段的进度,按情况不同可能实际的情况也不同,但是我们会尽量跟 ...

  5. DPDK实例程序:testpmd

    用户手册:https://doc.dpdk.org/guides/testpmd_app_ug/index.html 还不错的入门:http://syswift.com/188.html 我的运行情况 ...

  6. Visual Studio发展历程初浅调研

    名称 内部版本 发布日期 支持.NET Framework版本 核心功能 竞争对手 优缺点 Visual C++ 1.0 Visual Studio的最初原型 1992 把软件开发带入了可视化开发的时 ...

  7. poi excel导入 数字自动加小数点

    问题:导入excel表,若表格中为整数数字,不管单元格设置成数字格式还是文本格式,导入时都会出现小数点和0. 我遇到的问题是:一个名称,做测试数据的时候做了纯整形数字,发现了这个问题. 解决办法:在代 ...

  8. [BUAA_SE_2017]代码复审-Week2

    代码复审 CheckList 1.概要部分 代码能符合需求和规格说明么? 符合,经过-c及-s合法参数测试,程序均能生成.求解相应数独. 代码设计是否有周全的考虑? 对于非法输入,程序处理不够周全. ...

  9. es6 javascript对象方法Object.assign()

    es6 javascript对象方法Object.assign() 2016年12月01日 16:42:34 阅读数:38583 1  基本用法 Object.assign方法用于对象的合并,将源对象 ...

  10. Spring Cloud之Eureka服务注册与发现

    解决什么问题 ➟阐述微服务以及服务注册发现的部分概念 ➟阐述Eureka服务注册与发现的部分原理及细节 为什么需要服务中心 过去,每个应用都是一个CPU,一个主机上的单一系统.然而今天,随着大数据和云 ...