hdu 4547 LCA **
题意:在Windows下我们可以通过cmd运行DOS的部分功能,其中CD是一条很有意思的命令,通过CD操作,我们可以改变当前目录。
这里我们简化一下问题,假设只有一个根目录,CD操作也只有两种方式:
1. CD 当前目录名\...\目标目录名 (中间可以包含若干目录,保证目标目录通过绝对路径可达)
2. CD .. (返回当前目录的上级目录)
现在给出当前目录和一个目标目录,请问最少需要几次CD操作才能将当前目录变成目标目录?
链接:点我
先返回到根目录,然后直接前进到目标目录
#include <iostream>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <math.h>
#include <string>
#include <stdio.h>
#include <math.h>
using namespace std;
#define MOD 1000000007
#define pb(a) push_back(a)
const int INF=0x3f3f3f3f;
const double eps=1e-;
typedef long long ll;
#define cl(a) memset(a,0,sizeof(a))
#define ts printf("*****\n");
const int MAXN=;
int n,m,ttt;
int a[MAXN];
int rmq[*MAXN];//rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[*MAXN];
int dp[*MAXN][];//最小值对应的下标
void init(int n)
{
mm[] = -;
for(int i = ;i <= n;i++)
{
mm[i] = ((i&(i-)) == )?mm[i-]+:mm[i-];
dp[i][] = i;
}
for(int j = ; j <= mm[n];j++)
for(int i = ; i + (<<j) - <= n; i++)
dp[i][j] = rmq[dp[i][j-]] < rmq[dp[i+(<<(j-))][j-]]?dp[i][j-]:dp[i+(<<(j-))][j-];
}
int query(int a,int b)//查询[a,b]之间最小值的下标
{
if(a > b)swap(a,b);
int k = mm[b-a+];
return rmq[dp[a][k]] <= rmq[dp[b-(<<k)+][k]]?dp[a][k]:dp[b-(<<k)+][k];
}
};
//边的结构体定义
struct Edge
{
int to,next;
};
Edge edge[MAXN*];
int tot,head[MAXN];
int F[MAXN*];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN];//P[i]表示点i在F中第一次出现的位置
int cnt;
ST st;
void init()
{
tot = ;
memset(head,-,sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u,int pre,int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for(int i = head[u];i != -;i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)continue;
dfs(v,u,dep+);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root,int node_num)//查询LCA前的初始化
{
cnt = ;
dfs(root,root,);
st.init(*node_num-);
}
int query_lca(int u,int v)//查询u,v的lca编号
{
return F[st.query(P[u],P[v])];
}
bool flag[MAXN];
int Count_num[MAXN];
int deep[MAXN];
vector<int>vc[MAXN];
map<string,int> mp;
void bfs(int root)
{
cl(deep);
int now,next;
queue<int> q;
q.push(root);
deep[root]=;
while(!q.empty())
{
now=q.front();
q.pop();
for(int i=;i<vc[now].size();i++)
{
next=vc[now][i];
if(deep[next]==)
{
deep[next]=deep[now]+;
q.push(next);
}
} }
}
int main()
{
int i,j,k;
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
scanf("%d",&ttt);
int ca=;
while(ttt--)
{
scanf("%d%d",&n,&m);
cl(flag);
init();
for(int i=;i<=n;i++)vc[i].clear();
string u,v;
mp.clear();
int tot=;
char s1[],s2[];
for(i=;i<n-;i++)
{
cin>>u>>v;
if(mp[u]==) mp[u]=++tot;
if(mp[v]==) mp[v]=++tot;
int a1=mp[u];
int a2=mp[v];
vc[a2].pb(a1);
addedge(a2,a1);
addedge(a1,a2);
flag[a1]=;
}
int root;
for(int i=;i<=n;i++)
if(!flag[i])
{
root=i;
break;
}
LCA_init(root,n);
bfs(root);
for(i=;i<m;i++)
{
cin>>u>>v;
int a1=mp[u];
int a2=mp[v];
int temp=query_lca(a1,a2);
int ans=deep[a1]-deep[temp];
if(temp!=a2) ans++;
printf("%d\n",ans);
}
}
}
hdu 4547 LCA **的更多相关文章
- hdu 4547(LCA)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4547 思路:这题的本质还是LCA问题,但是需要注意的地方有: 1.如果Q中u,v的lca为u,那么只需 ...
- 【HDU 4547 CD操作】LCA问题 Tarjan算法
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4547 题意:模拟DOS下的cd命令,给出n个节点的目录树以及m次查询,每个查询包含一个当前目录cur和 ...
- HDU 4547 CD操作 (LCA最近公共祖先Tarjan模版)
CD操作 倍增法 https://i.cnblogs.com/EditPosts.aspx?postid=8605845 Time Limit : 10000/5000ms (Java/Other) ...
- lca讲解 && 例题 HDU - 4547
一. 最普通的找树中两个点x,y最近公共祖先: 在进行lca之前我们要先对这一颗树中的每一个点进行一个编号,像下图一样.这个编号就是tarjan算法中的dfn[]数组 这样的话我们可以在跑tarjan ...
- HDU 3078 (LCA+树链第K大)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3078 题目大意:定点修改.查询树中任意一条树链上,第K大值. 解题思路: 先用离线Tarjan把每个 ...
- HDU 2586 (LCA模板题)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2586 题目大意:在一个无向树上,求一条链权和. 解题思路: 0 | 1 / \ 2 3 ...
- [hdu 2586]lca模板题(在线+离线两种版本)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 在线版本: 在线方法的思路很简单,就是倍增.一遍dfs得到每个节点的父亲,以及每个点的深度.然后 ...
- hdu 2874(LCA)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 思路:近乎纯裸的LCA,只是题目给出的是森林,就要判断是否都在同一颗树上,这里我们只需判断两个子 ...
- HDU 2586 ( LCA/tarjan算法模板)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 题意:n个村庄构成一棵无根树,q次询问,求任意两个村庄之间的最短距离 思路:求出两个村庄的LCA,d ...
随机推荐
- Qbot回归,已感染5.4万台计算机
Qbot回归,已感染5.4万台计算机 近日,BAESystems的安全人员发表了一篇关于Qbot网络感知蠕虫回归的调查报告,指出已经感染了5.4万台计算机. FreeBuf百科 Qbot蠕虫,也叫Qa ...
- python 面试题4
Python面试题 基础篇 分类: Python2014-08-08 13:15 2071人阅读 评论(0) 收藏 举报 最近,整理了一些python常见的面试题目,语言是一种工具,但是多角度的了解工 ...
- Sysmon + NXlog构建简单的windows安全监控
工具: Sysmon (sysmon 5.0) ,NXlog(nxlog-ce-2.9.1716.msi) . Sysmon监控系统并生成windows event log, NXlog将wind ...
- ECMAScript——(二)
1.语法 区分大小写 变量是弱类型(定义变量时只用 var 运算符,可以将它初始化为任意值.) 每行结尾的分号可有可无(建议写上) 注释与Java一样 括号表示代码块 2.变量 变量可以不用声明,变量 ...
- JavaScript入门--慕课网学习笔记
JAVASCRIPT—(慕课网)入门篇 我们来看看如何写入JS代码?你只需一步操作,使用<script>标签在HTML网页中插入JavaScript代码.注意, <script&g ...
- 使用隐藏form表单下载文件,解决url方式下载,由于环境问题而限制url长度,满足不了所有的需求!
一 对于某些环境导出是直接用wiondow.href=url直接导出下载,有些业务需求,如员工档案等字段比较多的时候,全选导出就会引发异常,由于Nginx转发长度限制的问题, 如果运维不愿意改变环境, ...
- 【codeforces】【比赛题解】#940 CF Round #466 (Div. 2)
人生的大起大落莫过如此,下一场我一定要回紫. [A]Points on the line 题意: 一个直线上有\(n\)个点,要求去掉最少的点,使得最远两点距离不超过\(d\). 题解: 暴力两重fo ...
- ARM Linux 3.x的设备树(Device Tree)【转】
转自:http://blog.csdn.net/21cnbao/article/details/8457546 宋宝华 Barry Song <21cnbao@gmail.com> 1. ...
- Linux(Centos )的网络内核参数优化来提高服务器并发处理能力【转】
简介 提高服务器性能有很多方法,比如划分图片服务器,主从数据库服务器,和网站服务器在服务器.但是硬件资源额定有限的情况下,最大的压榨服务器的性能,提高服务器的并发处理能力,是很多运维技术人员思考的问题 ...
- Qt软件打包发布(QT5.4.1(msvc2013_64_opengl),Win7 64bit)
环境:QT5.4.1(msvc2013_64_opengl),Win7 64bit 编译方式 Qt开发的程序发布的时候经常采用两种方式:1)静态编译,可生成单一的可执行文件:2)动态编译,需同时附上需 ...