【bzoj4543】[POI2014]Hotel加强版
抄题解.jpg
发现原来的\(O(n^2)\)的换根\(dp\)好像行不通了呀
我们考虑非常牛逼的长链剖分
我们设\(f[x][j]\)表示在\(x\)的子树中距离\(x\)为\(j\)的点有多少个
\(g[x][j]\)表示在\(x\)的子树里,满足如下条件的点对\((u,v)\)的个数
设\(k=LCA(u,v)\),满足\(dis(u,k)=dis(v,k)=d\)
满足\(dis(k,x)=d-j\)
我们发现可以如果\(v\)是\(x\)的儿子,那么距离\(v\)为\(j-1\)的点和\(x\)的距离就是\(j\),那么到\(k\)的距离就是\(d-j+j=d\),和点对到\(k\)的距离相等
于是我们可以这样合并
\]
自然还有
\]
\(f\)数组的更新非常简单啊,就是\(f[x][j]+=f[v][j-1]\),这个我们可以用长链剖分优化到\(O(n)\)
之后是\(g\)的更新
首先我们有\(g[x][j]+=g[v][j+1]\),就是到\(x\)距离为\(d-j\)的\(k\)到\(v\)的距离必然是\(d-j-1\),这里我们也可以直接长链剖分
之后\(g[x][j+1]+=f[x][j+1]\times f[v][j]\),这样产生的点对的\(LCA\)就是\(x\),到\(x\)的距离也就是\(j+1\),符合条件,这里直接暴力转移就好了
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=100006;
inline int read() {
char c=getchar();int x=0;while(c<'0'||x>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
struct E{int v,nxt;}e[maxn<<1];
int head[maxn],len[maxn],n,num,son[maxn],deep[maxn];
LL tax[maxn*6],*id=tax,*f[maxn],*g[maxn],ans;
inline void add(int x,int y) {
e[++num].v=y;e[num].nxt=head[x];head[x]=num;
}
void dfs1(int x) {
for(re int i=head[x];i;i=e[i].nxt) {
if(deep[e[i].v]) continue;
deep[e[i].v]=deep[x]+1;
dfs1(e[i].v);
if(len[e[i].v]>len[son[x]]) son[x]=e[i].v;
}
len[x]=len[son[x]]+1;
}
void dfs(int x) {
f[x][0]=1;
if(son[x]) {
g[son[x]]=g[x]-1;
f[son[x]]=f[x]+1;
dfs(son[x]);
}
ans+=g[x][0];
for(re int i=head[x];i;i=e[i].nxt) {
if(deep[e[i].v]<deep[x]||son[x]==e[i].v) continue;
f[e[i].v]=id;id+=len[e[i].v]+1;
g[e[i].v]=id+len[e[i].v]+1;id+=2*len[e[i].v]+2;
dfs(e[i].v);
for(re int j=len[e[i].v];j>=0;--j) {
if(j) ans+=f[x][j-1]*g[e[i].v][j];
ans+=g[x][j+1]*f[e[i].v][j];
g[x][j+1]+=f[e[i].v][j]*f[x][j+1];
}
for(re int j=0;j<=len[e[i].v];j++) {
if(j) g[x][j-1]+=g[e[i].v][j];
f[x][j+1]+=f[e[i].v][j];
}
}
}
int main() {
n=read();
for(re int x,y,i=1;i<n;i++)
x=read(),y=read(),add(x,y),add(y,x);
deep[1]=1;dfs1(1);
f[1]=id;id+=len[1]+1;
g[1]=id+len[1]+1;//由于我们继承重儿子是g[son[x]]=g[x]-1,所以得在这个指针前面留一些空位置来让后面的状态继承
id+=2*len[1]+2;
dfs(1);printf("%lld\n",ans);
return 0;
}
【bzoj4543】[POI2014]Hotel加强版的更多相关文章
- BZOJ4543 POI2014 Hotel加强版 【长链剖分】【DP】*
BZOJ4543 POI2014 Hotel加强版 Description 同OJ3522 数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 4 ...
- BZOJ4543 [POI2014]Hotel加强版
题意 有一个树形结构,每条边的长度相同,任意两个节点可以相互到达.选3个点.两两距离相等.有多少种方案? 数据范围:n<=100000 分析 参照小蒟蒻yyb的博客. 我们先考虑一个\(O(n^ ...
- bzoj4543 [POI2014]Hotel加强版 长链剖分+树形DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4543 题解 这道题的弱化版 bzoj3522 [POI2014]Hotel 的做法有好几种吧. ...
- BZOJ4543[POI2014]Hotel加强版——长链剖分+树形DP
题意参见BZOJ3522 n<=100000 数据范围增强了,显然之前的转移方程不行了,那么不妨换一种. 因为不能枚举根来换根DP,那么我们描述的DP方程每个点要计算三个点都在这个点的子树内的方 ...
- 2019.01.08 bzoj4543: [POI2014]Hotel加强版(长链剖分+dp)
传送门 代码: 长链剖分好题. 题意:给你一棵树,问树上选三个互不相同的节点,使得这个三个点两两之间距离相等的方案数. 思路: 先考虑dpdpdp. fi,jf_{i,j}fi,j表示iii子树中离 ...
- 【BZOJ4543】[POI2014]Hotel加强版 长链剖分+DP
[BZOJ4543][POI2014]Hotel加强版 Description 同OJ3522数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 ...
- 【BZOJ4543】Hotel加强版(长链剖分)
[BZOJ4543]Hotel加强版(长链剖分) 题面 BZOJ,没有题面 洛谷,只是普通版本 题解 原来我们的\(O(n^2)\)做法是设\(f[i][j]\)表示以\(i\)为根的子树中,距离\( ...
- 4543: [POI2014]Hotel加强版
4543: [POI2014]Hotel加强版 链接 分析: f[u][i]表示子树u内,距离u为i的点的个数,g[u][i]表示在子树u内,已经选了两个深度一样的点,还需要在距离u为i的一个点作为第 ...
- 【BZOJ4543】Hotel加强版
[BZOJ4543]Hotel加强版 题面 bzoj 洛谷 $ps:$在洛谷看题在bzoj交... 题解 我们分析一下这个问题,要怎么样的点才满足三点距离两两相等呢? 1.存在三个点有共同的$LCA$ ...
- bzoj4543[POI2014]Hotel
题目链接 bzoj4543 [POI2014]Hotel 题解 这不是裸地点分嘛 ,我真傻,真的 n^2 这不是是sb题,~滑稽 ~ 枚举点转换为无根树,暴力子树中点的深度 计数转移 令a b c d ...
随机推荐
- Linux 添加定时任务,crontab -e 命令与直接编辑 /etc/crontab 文件
1. 使用 crontab -e 命令编辑定时任务列表 使用这个命令编辑的定时任务列表是属于用户级别的,初次编辑后在 /var/spool/cron 目录下生成一个与用户名相同的文件,文件内容就是我们 ...
- fzu 2154 YesOrNo
Problem 2154 YesOrNo Accept: 14 Submit: 29Time Limit: 1000 mSec Memory Limit : 32768 KB Proble ...
- K:有限状态自动机
有限状态自动机是一种特殊的状态机.它表示有限个状态以及在这些状态之间的转移和动作等行为的数学模型.有限状态自动机分为两种,一种是 确定有限状态自动机(DFA) ,一种是 非确定有限状态自动机(NF ...
- python数据类型之字典
字典定义 字典是一种 key-value 的数据类型,这点很重要,是区别使用列表和字典的依据. 语法格式: info = { 'stu1101': "Aaron", 'stu110 ...
- curl 封装类
<?php /** * author: zbseoag * QQ: 617937424 用法: $content = Curl::instance()->url($url)->get ...
- gotop(返回顶部)
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Spring Boot—03REST请求
package com.smartmap.sample.ch1.controller.rest; import java.util.List; import org.apache.commons.lo ...
- 对layoutInflater的理解
参考该博客:http://www.cnblogs.com/top5/archive/2012/05/04/2482328.html LayoutInflater是一个抽象类,通过调用其实例方法infl ...
- 前端模块化方案全解(CommonJS/AMD/CMD/ES6)
模块化的开发方式可以提高代码复用率,方便进行代码的管理.通常一个文件就是一个模块,有自己的作用域,只向外暴露特定的变量和函数.目前流行的js模块化规范有CommonJS.AMD.CMD以及ES6的模块 ...
- leetCode题解之反转二叉树
1.题目描述 经典的反转二叉树,就是将二叉树中每个节点的左.右儿子交换. 2.题目分析 3.代码 TreeNode* invertTree(TreeNode* root) { if(root == N ...