MapReduce -- 好友推荐
MapReduce实现好友推荐:
张三的好友有王五、小红、赵六; 同样王五、小红、赵六的共同好友是张三;
在王五和小红不认识的前提下,可以通过张三互相认识,给王五推荐的好友为小红,
给小红推荐的好友是王五,就是王五、小红、赵六互为推荐关系。
根据分析就是有相同好友的人物之间为推荐关系,但要排除本来两人就是好友的情况。
计算一个人的好友推荐关系,推荐关系值为1,然后计算所有人的好友推荐关系,最终将推荐关系值相加,计算出最值得推荐的几个好友。
简单的说就是两个非好友的人,存在共同好友的人数越多,说明这两个人越值得互相推荐。
数据:
王五 李四 小丽 小玲
小丽 王五 赵六
李四 王五 张三 赵六 小红
小玲 王五 张三 赵六
张三 小玲 李四 赵六
赵六 小丽 小玲 张三 李四 小红
小红 李四 赵六
实现代码:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; /**
* 好友推荐:
* 计算两个非好友的推荐值,就是两个非好友的共同好友数
*
* Created by Edward on 2016/7/12.
*/
public class RunJob { public static void main(String[] args){ System.setProperty("HADOOP_USER_NAME", "root"); Configuration conf = new Configuration(); conf.set("fs.defaultFS", "hdfs://node1:8020"); try {
FileSystem fs = FileSystem.get(conf); Job job = Job.getInstance(conf);
job.setJarByClass(RunJob.class);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class); //需要指定 map out 的 key 和 value
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path("/test/friend/input")); Path path = new Path("/test/friend/output");
if(fs.exists(path))//如果目录存在,则删除目录
{
fs.delete(path,true);
}
FileOutputFormat.setOutputPath(job, path); boolean b = job.waitForCompletion(true);
if(b)
{
System.out.println("OK");
} } catch (Exception e) {
e.printStackTrace();
} } public static class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> { @Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] str = value.toString().split("\t"); for(int i=1; i<str.length; i++) {
//a 的好友是 b
context.write(new Text(str[0] + ":" + str[i]), new IntWritable(0));
//b 的好友是 a
context.write(new Text(str[i] + ":" + str[0]), new IntWritable(0));
for (int j = i + 1; j < str.length; j++) {
// A 的推荐好友是 B
context.write(new Text(str[i] + ":" + str[j]), new IntWritable(1));
// B 的推荐好友是 A
context.write(new Text(str[j] + ":" + str[i]), new IntWritable(1));
}
}
}
} public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> { @Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0;
for(IntWritable i: values)
{
if(i.get() == 0) {//两个人已经是好朋友的,排除在外
sum = 0;
//break;
return;
}
sum += i.get();
}
context.write(key, new IntWritable(sum));
}
}
}
计算结果:
小丽:小玲
小丽:小红
小丽:张三
小丽:李四
小玲:小丽
小玲:小红
小玲:李四
小红:小丽
小红:小玲
小红:张三
小红:王五
张三:小丽
张三:小红
张三:王五
李四:小丽
李四:小玲
王五:小红
王五:张三
王五:赵六
赵六:王五
对结果进行简单的核对,比对图
小丽:小玲 2
小丽和小玲的共同好友数为2,分别为:王五,赵六
MapReduce -- 好友推荐的更多相关文章
- MapReduce案例-好友推荐
用过各种社交平台(如QQ.微博.朋友网等等)的小伙伴应该都知道有一个叫 "可能认识" 或者 "好友推荐" 的功能(如下图).它的算法主要是根据你们之间的共同好友 ...
- 19-hadoop-fof好友推荐
好友推荐的案例, 需要两个job, 第一个进行好友关系度计算, 第二个job将计算的关系进行推荐 1, fof关系类 package com.wenbronk.friend; import org.a ...
- 吴裕雄--天生自然HADOOP操作实验学习笔记:qq好友推荐算法
实验目的 初步认识图计算的知识点 复习mapreduce的知识点,复习自定义排序分组的方法 学会设计mapreduce程序解决实际问题 实验原理 QQ好友推荐算法是所有推荐算法中思路最简单的,我们利用 ...
- 【Hadoop学习之十】MapReduce案例分析二-好友推荐
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 最应该推荐的好友TopN,如何排名 ...
- MapReduce案例二:好友推荐
1.需求 推荐好友的好友 图1: 2.解决思路 3.代码 3.1MyFoF类代码 说明: 该类定义了所加载的配置,以及执行的map,reduce程序所需要加载运行的类 package com.hado ...
- 【大数据系列】MapReduce示例好友推荐
package org.slp; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import ...
- hadoop计算二度人脉关系推荐好友
https://www.jianshu.com/p/8707cd015ba1 问题描述: 以下是qq好友关系,进行好友推荐,比如:老王和二狗是好友 , 二狗和春子以及花朵是好友,那么老王和花朵 或者老 ...
- 升级版:深入浅出Hadoop实战开发(云存储、MapReduce、HBase实战微博、Hive应用、Storm应用)
Hadoop是一个分布式系统基础架构,由Apache基金会开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运算和存储.Hadoop实现了一个分布式文件系 ...
- 使用MapReduce实现二度人脉搜索算法
一,背景介绍 在新浪微博.人人网等社交网站上,为了使用户在网络上认识更多的朋友,社交网站往往提供类似“你可能感兴趣的人”.“间接关注推荐”等好友推荐的功能,其中就包含了二度人脉算法. 二,算法实现 原 ...
随机推荐
- 实用的Javascript获取网页屏幕可见区域高度
本文转载原地址:这里 document.body.clientWidth ==> BODY对象宽度 document.body.clientHeight ==> BODY对象高度 docu ...
- CSS 画一个八卦
效果图: 实现原理: 设置高度为宽度的2倍的一个框,利用 border 补全另一半的宽度,设置圆角 用两个 div 设置不同的颜色,定位到圆的上下指定位置. 最后只剩下里面的小圆圈了.设个宽高,圆角即 ...
- JavaWEB SSH文件上传
一.提交表单的<form> method属性必须为post 并且添加enctype="multipart/form-data" 属性 前台: <td>上传 ...
- 大数据平台的技术演化之路 诸葛io平台设计实例
如今,数据分析能力正逐渐成为企业发展的标配,企业通过数据分析的过程将数据中的信息提取出来,进行处理.识别.加工.呈现,最后成为指导企业业务发展的知识和智慧.而处理.识别.加工.呈现的过程从本质上来讲, ...
- Tab Key not working when using Xfce remote desktop
Xfce 远程桌面Tab键设置 Use CTRL-tab instead of tab The XFCE Terminal has kidnapped the tab key for a featu ...
- Sql_从查询的结果集中分组后取最后有效的数据成新的结果集小记(待优化)
Dim sql As String = " SELECT xp.*, " sql = sql + " xf_owner.ownername, " sql = s ...
- jQuery1.7版本之后的on方法
之前就一直受这个问题的困扰,在jQuery1.7版本之后添加了on方法,之前就了解过,其优越性高于 live(),bind(),delegate()等方法,在此之前项目中想用这个来测试结果发现,居然动 ...
- .Oracle固定执行计划之SQL PROFILE概要文件
1. 引子Oracle系统为了合理分配和使用系统的资源提出了概要文件的概念.所谓概要文件,就是一份描述如何使用系统的资源(主要是CPU资源)的配置文件.将概要文件赋予某个数据库用户,在用户连接并访问 ...
- 模仿SDWebImage实现异步加载图片
模仿SDWebImage实现异步加载图片 SDWebImage想必大家都不陌生吧,要实现它的图片异步加载功能这个还是很简单的. 注意:此处我只实现了异步加载图片,并没有将文件缓存到本地的打算哦:) 源 ...
- 铁乐学Python_Day34_Socket模块2和黏包现象
铁乐学Python_Day34_Socket模块2和黏包现象 套接字 套接字是计算机网络数据结构,它体现了C/S结构中"通信端点"的概念. 在任何类型的通信开始之前,网络应用程序必 ...